How to enhance quantum generative adversarial learning of noisy information

被引:12
作者
Braccia, Paolo [1 ,2 ,3 ,4 ]
Caruso, Filippo [1 ,3 ,4 ,5 ]
Banchi, Leonardo [1 ,2 ]
机构
[1] Univ Firenze, Dipartimento Fis & Astron, I-50019 Sesto Fiorentino, FI, Italy
[2] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, FI, Italy
[3] LENS, Via N Carrara 1, I-50019 Sesto Fiorentino, Italy
[4] QSTAR, Via N Carrara 1, I-50019 Sesto Fiorentino, Italy
[5] CNR INO, Ist Nazl Ott, Florence, Italy
基金
欧盟地平线“2020”;
关键词
quantum information; quantum machine learning; quantum algorithms; optimization; noise;
D O I
10.1088/1367-2630/abf798
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum machine learning is where nowadays machine learning (ML) meets quantum information science. In order to implement this new paradigm for novel quantum technologies, we still need a much deeper understanding of its underlying mechanisms, before proposing new algorithms to feasibly address real problems. In this context, quantum generative adversarial learning is a promising strategy to use quantum devices for quantum estimation or generative ML tasks. However, the convergence behaviours of its training process, which is crucial for its practical implementation on quantum processors, have not been investigated in detail yet. Indeed here we show how different training problems may occur during the optimization process, such as the emergence of limit cycles. The latter may remarkably extend the convergence time in the scenario of mixed quantum states playing a crucial role in the already available noisy intermediate scale quantum devices. Then, we propose new strategies to achieve a faster convergence in any operating regime. Our results pave the way for new experimental demonstrations of such hybrid classical-quantum protocols allowing to evaluate the potential advantages over their classical counterparts.
引用
收藏
页数:12
相关论文
共 54 条
[1]  
Anand A., 2020, ARXIV200601976
[2]  
[Anonymous], 2013, PROC C LEARN THEORY
[3]   Convex optimization of programmable quantum computers [J].
Banchi, Leonardo ;
Pereira, Jason ;
Lloyd, Seth ;
Pirandola, Stefano .
NPJ QUANTUM INFORMATION, 2020, 6 (01)
[4]   Improving Variational Quantum Optimization using CVaR [J].
Barkoutsos, Panagiotis Kl. ;
Nannicini, Giacomo ;
Robert, Anton ;
Tavernelli, Ivano ;
Woerner, Stefan .
QUANTUM, 2020, 4
[5]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[6]   Adversarial quantum circuit learning for pure state approximation [J].
Benedetti, Marcello ;
Grant, Edward ;
Wossnig, Leonard ;
Severini, Simone .
NEW JOURNAL OF PHYSICS, 2019, 21 (04)
[7]  
Bharti K., 2021, ARXIV210108448
[8]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[9]  
Cerezo M., 2020, (arXiv:2012.09265[quant-ph, stat])
[10]  
Crooks GE., 2020, ARXIV200510299