On-chip Fourier-transform spectrometers and machine learning: a new route to smart photonic sensors

被引:28
作者
Herrero-Bermello, Alaine [1 ]
Li, Jiangfeng [2 ]
Khazaei, Mohammad [2 ]
Grinberg, Yuri [3 ]
Velasco, Aitor V. [1 ]
Vachon, Martin [3 ]
Cheben, Pavel [3 ]
Stankovic, Lina [2 ]
Stankovic, Vladimir [2 ]
Xu, Dan-Xia [3 ]
Schmid, Jens H. [3 ]
Alonso-Ramos, Carlos [4 ]
机构
[1] CSIC, Inst Opt, Madrid 28006, Spain
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
[3] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada
[4] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, Univ Paris Sud, F-91405 Orsay, France
基金
欧盟地平线“2020”;
关键词
D O I
10.1364/OL.44.005840
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Miniaturized silicon photonics spectrometers capable of detecting specific absorption features have great potential for mass market applications in medicine, environmental monitoring, and hazard detection. However, state-of-the-art silicon spectrometers are limited by fabrication imperfections and environmental conditions, especially temperature variations, since uncontrolled temperature drifts of only 0.1 degrees C distort the retrieved spectrum precluding the detection and classification of the absorption features. Here we present a new strategy that exploits the robustness of machine learning algorithms to signal imperfections, enabling recognition of specific absorption features in a wide range of environmental conditions. We combine on-chip spatial heterodyne Fourier-transform spectrometers and supervised learning to classify different input spectra in the presence of fabrication errors, without temperature stabilization or monitoring. We experimentally show the differentiation of four different input spectra under an uncontrolled 10 degrees C range of temperatures, about 100x increase in operational range, with a success rate up to 82.5% using state-of-the-art support vector machines and artificial neural networks. (C) 2019 Optical Society of America
引用
收藏
页码:5840 / 5843
页数:4
相关论文
共 21 条
  • [11] Wavelength-scale stationary-wave integrated Fourier-transform spectrometry
    Le Coarer, Etienne
    Blaize, Sylvain
    Benech, Pierre
    Stefanon, Ilan
    Morand, Alain
    Lerondel, Gilles
    Leblond, Gregory
    Kern, Pierre
    Fedeli, Jean Marc
    Royer, Pascal
    [J]. NATURE PHOTONICS, 2007, 1 (08) : 473 - 478
  • [12] Machine learning applications in genetics and genomics
    Libbrecht, Maxwell W.
    Noble, William Stafford
    [J]. NATURE REVIEWS GENETICS, 2015, 16 (06) : 321 - 332
  • [13] Ma K., 2018, IEEE PHOTONICS J, V11
  • [14] CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform
    Nie, Xiaomin
    Ryckeboer, Eva
    Roelkens, Gunther
    Baets, Roel
    [J]. OPTICS EXPRESS, 2017, 25 (08): : A409 - A418
  • [15] Fabrication of Fourier-transform, integrated-optic spatial heterodyne spectrometer on silica-based planar waveguide
    Okamoto, Katsunari
    Aoyagi, Hirotaka
    Takada, Kazumasa
    [J]. OPTICS LETTERS, 2010, 35 (12) : 2103 - 2105
  • [16] Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer
    Podmore, Hugh
    Scott, Alan
    Cheben, Pavel
    Velasco, Aitor V.
    Schmid, Jens H.
    Vachon, Martin
    Lee, Regina
    [J]. OPTICS LETTERS, 2017, 42 (07) : 1440 - 1443
  • [17] Gas-phase databases for quantitative infrared spectroscopy
    Sharpe, SW
    Johnson, TJ
    Sams, RL
    Chu, PM
    Rhoderick, GC
    Johnson, PA
    [J]. APPLIED SPECTROSCOPY, 2004, 58 (12) : 1452 - 1461
  • [18] Scanning Spectrometer-on-a-Chip Using Thermo-Optical Spike-Filters or Vernier-Comb Filters
    Soref, Richard A.
    De Leonardis, Francesco
    Passaro, Vittorio M. N.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (13) : 3192 - 3200
  • [19] Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction
    Souza, Mario C. M. M.
    Grieco, Andrew
    Frateschi, Newton C.
    Fainman, Yeshaiahu
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [20] High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides
    Velasco, Aitor V.
    Cheben, Pavel
    Bock, Przemek J.
    Delage, Andre
    Schmid, Jens H.
    Lapointe, Jean
    Janz, Siegfried
    Calvo, Maria L.
    Xu, Dan-Xia
    Florjanczyk, Miroslaw
    Vachon, Martin
    [J]. OPTICS LETTERS, 2013, 38 (05) : 706 - 708