On-chip Fourier-transform spectrometers and machine learning: a new route to smart photonic sensors

被引:26
作者
Herrero-Bermello, Alaine [1 ]
Li, Jiangfeng [2 ]
Khazaei, Mohammad [2 ]
Grinberg, Yuri [3 ]
Velasco, Aitor V. [1 ]
Vachon, Martin [3 ]
Cheben, Pavel [3 ]
Stankovic, Lina [2 ]
Stankovic, Vladimir [2 ]
Xu, Dan-Xia [3 ]
Schmid, Jens H. [3 ]
Alonso-Ramos, Carlos [4 ]
机构
[1] CSIC, Inst Opt, Madrid 28006, Spain
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
[3] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada
[4] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, Univ Paris Sud, F-91405 Orsay, France
基金
欧盟地平线“2020”;
关键词
D O I
10.1364/OL.44.005840
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Miniaturized silicon photonics spectrometers capable of detecting specific absorption features have great potential for mass market applications in medicine, environmental monitoring, and hazard detection. However, state-of-the-art silicon spectrometers are limited by fabrication imperfections and environmental conditions, especially temperature variations, since uncontrolled temperature drifts of only 0.1 degrees C distort the retrieved spectrum precluding the detection and classification of the absorption features. Here we present a new strategy that exploits the robustness of machine learning algorithms to signal imperfections, enabling recognition of specific absorption features in a wide range of environmental conditions. We combine on-chip spatial heterodyne Fourier-transform spectrometers and supervised learning to classify different input spectra in the presence of fabrication errors, without temperature stabilization or monitoring. We experimentally show the differentiation of four different input spectra under an uncontrolled 10 degrees C range of temperatures, about 100x increase in operational range, with a success rate up to 82.5% using state-of-the-art support vector machines and artificial neural networks. (C) 2019 Optical Society of America
引用
收藏
页码:5840 / 5843
页数:4
相关论文
共 21 条
  • [1] Interleaved Silicon Nitride AWG Spectrometers
    Akca, B. Imran
    Doerr, Christopher R.
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (01) : 90 - 93
  • [2] Design of a compact and ultrahigh-resolution Fourier-transform spectrometer
    Akca, B. Imran
    [J]. OPTICS EXPRESS, 2017, 25 (02): : 1487 - 1494
  • [3] [Anonymous], P IEEE C LOC COMP NE
  • [4] Bartlet M. S., 2005, P IEEE COMP SOC C CO
  • [5] Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers
    Cheben, Pavel
    Bock, Przemek J.
    Schmid, Jens H.
    Lapointe, Jean
    Janz, Siegfried
    Xu, Dan-Xia
    Densmore, Adam
    Delage, Andre
    Lamontagne, Boris
    Hall, Trevor J.
    [J]. OPTICS LETTERS, 2010, 35 (15) : 2526 - 2528
  • [6] A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application
    Ferrari, Marco
    Quaresima, Valentina
    [J]. NEUROIMAGE, 2012, 63 (02) : 921 - 935
  • [7] The Early Days of Commercial FT-IR Spectrometry: A Personal Perspective
    Griffiths, Peter R.
    [J]. APPLIED SPECTROSCOPY, 2017, 71 (03) : 329 - 340
  • [8] Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers
    Herrero-Bermello, Alaine
    Velasco, Aitor V.
    Podmore, Hugh
    Cheben, Pavel
    Schmid, Jens H.
    Janz, Siegfried
    Calvo, Maria L.
    Xu, Dan-Xia
    Scott, Alan
    Corredera, Pedro
    [J]. OPTICS LETTERS, 2017, 42 (11) : 2239 - 2242
  • [9] Analysis of Tunable Flat-Top Bandpass Filters Based on Graphene
    Huang, Jie
    Yang, Junbo
    Zhang, Hailiang
    Zhang, Jingjing
    Wu, Wenjun
    Chang, Shengli
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (23) : 2677 - 2680
  • [10] High-performance and scalable on-chip digital Fourier transform spectroscopy
    Kita, Derek M.
    Miranda, Brando
    Favela, David
    Bono, David
    Michon, Jerome
    Lin, Hongtao
    Gu, Tian
    Hu, Juejun
    [J]. NATURE COMMUNICATIONS, 2018, 9