Deep monocular 3D reconstruction for assisted navigation in bronchoscopy

被引:80
作者
Visentini-Scarzanella, Marco [1 ]
Sugiura, Takamasa [1 ]
Kaneko, Toshimitsu [1 ]
Koto, Shinichiro [1 ]
机构
[1] Toshiba Corp Res & Dev Ctr, Multimedia Lab, 1 Komukai Toshiba Cho, Kawasaki, Kanagawa 2128582, Japan
关键词
Bronchoscopy; Deep learning; Assisted navigation; 3D reconstruction;
D O I
10.1007/s11548-017-1609-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Purpose In bronchoschopy, computer vision systems for navigation assistance are an attractive low-cost solution to guide the endoscopist to target peripheral lesions for biopsy and histological analysis. We propose a decoupled deep learning architecture that projects input frames onto the domain of CT renderings, thus allowing offline training from patient-specific CT data. Methods A fully convolutional network architecture is implemented onGPUand tested on a phantom dataset involving 32 video sequences and similar to 60k frames with aligned ground truth and renderings, which is made available as the first public dataset for bronchoscopy navigation. Results An average estimated depth accuracy of 1.5mm was obtained, outperforming conventional direct depth estimation from input frames by 60%, and with a computational time of <= 30mson modernGPUs. Qualitatively, the estimated depth and renderings closely resemble the ground truth. Conclusions The proposed method shows a novel architecture to perform real-time monocular depth estimationwithout losing patient specificity in bronchoscopy. Future work will include integration within SLAM systems and collection of in vivo datasets.
引用
收藏
页码:1089 / 1099
页数:11
相关论文
共 34 条
[1]  
[Anonymous], TECH REP
[2]  
[Anonymous], SPIE MED IMAGING
[3]  
[Anonymous], 2016, DEEP LEARNING
[4]  
[Anonymous], INT C MED IM COMP CO
[5]   Virtual Bronchoscopic Navigation for Peripheral Pulmonary Lesions [J].
Asano, Fumihiro ;
Eberhardt, Ralf ;
Herth, Felix J. F. .
RESPIRATION, 2014, 88 (05) :430-440
[6]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[7]   LungPoint-A New Approach to Peripheral Lesions [J].
Eberhardt, Ralf ;
Kahn, Nicolas ;
Gompelmann, Daniela ;
Schumann, Maren ;
Heussel, Claus Peter ;
Herth, Felix J. F. .
JOURNAL OF THORACIC ONCOLOGY, 2010, 5 (10) :1559-1563
[8]   Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture [J].
Eigen, David ;
Fergus, Rob .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2650-2658
[9]   LSD-SLAM: Large-Scale Direct Monocular SLAM [J].
Engel, Jakob ;
Schoeps, Thomas ;
Cremers, Daniel .
COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 :834-849
[10]   Automatic generation and detection of highly reliable fiducial markers under occlusion [J].
Garrido-Jurado, S. ;
Munoz-Salinas, R. ;
Madrid-Cuevas, F. J. ;
Marin-Jimenez, M. J. .
PATTERN RECOGNITION, 2014, 47 (06) :2280-2292