Vascular endothelial growth factor receptor 3 signaling contributes to angioobliterative pulmonary hypertension

被引:25
作者
Al-Husseini, Ayser [1 ]
Kraskauskas, Donatas [1 ]
Mezzaroma, Eleanora [2 ]
Nordio, Andrea [2 ]
Farkas, Daniela [1 ]
Drake, Jennifer I. [1 ]
Abbate, Antonio [2 ]
Felty, Quentin [3 ]
Voelkel, Norbert F. [1 ]
机构
[1] Virginia Commonwealth Univ, Victoria Johnson Lab Lung Res, Richmond, VA USA
[2] Virginia Commonwealth Univ, VCU Pauley Heart Ctr, Richmond, VA USA
[3] Florida Int Univ, Dept Environm & Occupat Hlth, Miami, FL 33199 USA
关键词
Sugen; 5416; chronic hypoxia; VEGF isoforms; VEGF receptor 3; sFlt-1; MAZ51; right heart failure; capillary rarefaction; FACTOR-B; ARTERIAL-HYPERTENSION; PLEXIFORM LESIONS; PHOSPHOLIPASE-D; UP-REGULATION; FACTOR-C; VEGF-C; ANGIOGENESIS; CELL; SPARC;
D O I
10.1086/679704
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The mechanisms involved in the development of severe angioobliterative pulmonary arterial hypertension (PAH) are multicellular and complex. Many of the features of human severe PAH, including angioobliteration, lung perivascular inflammation, and right heart failure, are reproduced in the Sugen 5416/chronic hypoxia (SuHx) rat model. Here we address, at first glance, the confusing and paradoxical aspect of the model, namely, that treatment of rats with the antiangiogenic vascular endothelial growth factor (VEGF) receptor 1 and 2 kinase inhibitor, Sugen 5416, when combined with chronic hypoxia, causes angioproliferative pulmonary vascular disease. We postulated that signaling through the unblocked VEGF receptor VEGFR3 (or flt4) could account for some of the pulmonary arteriolar lumen-occluding cell growth. We also considered that Sugen 5416-induced VEGFR1 and VEGFR2 blockade could alter the expression pattern of VEGF isoform proteins. Indeed, in the lungs of SuHx rats we found increased expression of the ligand proteins VEGF-C and VEGF-D as well as enhanced expression of the VEGFR3 protein. In contrast, in the failing right ventricle of SuHx rats there was a profound decrease in the expression of VEGF-B and VEGF-D in addition to the previously described reduction in VEGF-A expression. MAZ51, an inhibitor of VEGFR3 phosphorylation and VEGFR3 signaling, largely prevented the development of angioobliteration in the SuHx model; however, obliterated vessels did not reopen when animals with established PAH were treated with the VEGFR3 inhibitor. Part of the mechanism of vasoobliteration in the SuHx model occurs via VEGFR3. VEGFR1/VEGFR2 inhibition can be initially antiangiogenic by inducing lung vessel endothelial cell apoptosis; however, it can be subsequently angiogenic via VEGF-C and VEGF-D signaling through VEGFR3.
引用
收藏
页码:101 / 116
页数:16
相关论文
共 74 条
[31]   Induction of SPARC by VEGF in human vascular endothelial cells [J].
Kato, Y ;
Lewalle, JM ;
Baba, Y ;
Tsukuda, M ;
Sakai, N ;
Baba, M ;
Kobayashi, K ;
Koshika, S ;
Nagashima, Y ;
Frankenne, F ;
Noël, A ;
Foidart, JM ;
Hata, RI .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 287 (02) :422-426
[32]   Up-regulation of soluble vascular endothelial growth factor receptor-1 prevents angiogenesis in hypertrophied myocardium [J].
Kaza, Elisabeth ;
Ablasser, Klemens ;
Poutias, Dimitrios ;
Griffiths, Eric R. ;
Saad, Fawzy A. ;
Hofstaetter, Jochen G. ;
del Nido, Pedro J. ;
Friehs, Ingeborg .
CARDIOVASCULAR RESEARCH, 2011, 89 (02) :410-418
[33]   Maz51, an indolinone that inhibits endothelial cell and tumor cell growth in vitro, suppresses tumor growth in vivo [J].
Kirkin, V ;
Thiele, W ;
Baumann, P ;
Mazitschek, R ;
Rohde, K ;
Fellbrich, G ;
Weich, H ;
Waltenberger, J ;
Giannis, A ;
Sleeman, JP .
INTERNATIONAL JOURNAL OF CANCER, 2004, 112 (06) :986-993
[34]   The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells [J].
Kobayashi, T ;
Vischer, UM ;
Rosnoblet, C ;
Lebrand, C ;
Lindsay, M ;
Parton, RG ;
Kruithof, EKO ;
Gruenberg, J .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (05) :1829-1843
[35]   Signal Transduction by Vascular Endothelial Growth Factor Receptors [J].
Koch, Sina ;
Claesson-Welsh, Lena .
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2012, 2 (07)
[36]   SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells [J].
Kupprion, C ;
Motamed, K ;
Sage, EH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (45) :29635-29640
[37]  
Leclers D, 2006, ANTICANCER RES, V26, P1885
[38]   Exosomes Mediate the Cytoprotective Action of Mesenchymal Stromal Cells on Hypoxia-Induced Pulmonary Hypertension [J].
Lee, Changjin ;
Mitsialis, S. Alex ;
Aslam, Muhammad ;
Vitali, Sally H. ;
Vergadi, Eleni ;
Konstantinou, Georgios ;
Sdrimas, Konstantinos ;
Fernandez-Gonzalez, Angeles ;
Kourembanas, Stella .
CIRCULATION, 2012, 126 (22) :2601-+
[39]   Lysophosphatidic acid up-regulates vascular endothelial growth factor-C and lymphatic marker expressions in human endothelial cells [J].
Lin, C. -I. ;
Chen, C. -N. ;
Huang, M. -T. ;
Lee, S. -J. ;
Lin, C. -H. ;
Chang, C. -C. ;
Lee, H. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2008, 65 (17) :2740-2751
[40]   Circulating angiogenic modulatory factors predict survival and functional class in pulmonary arterial hypertension [J].
Malhotra, Rajeev ;
Paskin-Flerlage, Samuel ;
Zamanian, Roham T. ;
Zimmerman, Patrick ;
Schmidt, Jonathan W. ;
Deng, Donna Y. ;
Southwood, Mark ;
Spencer, Robert ;
Lai, Carol S. ;
Parker, William ;
Channick, Richard N. ;
Morrell, Nicholas W. ;
Elliott, Gregory ;
Yu, Paul B. .
PULMONARY CIRCULATION, 2013, 3 (02) :369-380