Classical statistical mechanics approach to multipartite entanglement

被引:29
作者
Facchi, P. [1 ,2 ]
Florio, G. [2 ,3 ]
Marzolino, U. [4 ,5 ]
Parisi, G. [6 ,7 ]
Pascazio, S. [2 ,3 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[3] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[4] Univ Trieste, Dipartimento Fis, I-34014 Trieste, Italy
[5] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy
[6] Univ Roma La Sapienza, Dipartimento Fis, CNR, INFM,Ctr Stat Mech & Complex, I-00185 Rome, Italy
[7] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
关键词
QUANTUM CRYPTOGRAPHY; PROBABILITY RELATIONS; STATE; ENTROPY;
D O I
10.1088/1751-8113/43/22/225303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over balanced bipartitions. We search for maximally multipartite entangled states, whose average purity is minimal, and recast this optimization problem into a problem of statistical mechanics, by introducing a cost function, a fictitious temperature and a partition function. By investigating the high-temperature expansion, we obtain the first three moments of the distribution. We find that the problem exhibits frustration.
引用
收藏
页数:33
相关论文
共 49 条
  • [41] Discussion of probability relations between separated systems
    Schrodinger, E
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1935, 31 : 555 - 563
  • [42] Probability relations between separated systems
    Schrodinger, E
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1936, 32 : 446 - 452
  • [43] Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions
    Scott, AJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (05): : 052330 - 1
  • [44] Entangling power of the quantum baker's map
    Scott, AJ
    Caves, CM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (36): : 9553 - 9576
  • [45] Sinolecka MM, 2002, ACTA PHYS POL B, V33, P2081
  • [46] Potential multiparticle entanglement measure
    Wong, A
    Christensen, N
    [J]. PHYSICAL REVIEW A, 2001, 63 (04): : 1 - 4
  • [47] Wootters WK, 2001, QUANTUM INF COMPUT, V1, P27
  • [48] Entanglement of formation of an arbitrary state of two qubits
    Wootters, WK
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (10) : 2245 - 2248
  • [49] Induced measures in the space of mixed quantum states
    Zyczkowski, K
    Sommers, HJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35): : 7111 - 7125