Classical statistical mechanics approach to multipartite entanglement

被引:29
作者
Facchi, P. [1 ,2 ]
Florio, G. [2 ,3 ]
Marzolino, U. [4 ,5 ]
Parisi, G. [6 ,7 ]
Pascazio, S. [2 ,3 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[3] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[4] Univ Trieste, Dipartimento Fis, I-34014 Trieste, Italy
[5] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy
[6] Univ Roma La Sapienza, Dipartimento Fis, CNR, INFM,Ctr Stat Mech & Complex, I-00185 Rome, Italy
[7] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
关键词
QUANTUM CRYPTOGRAPHY; PROBABILITY RELATIONS; STATE; ENTROPY;
D O I
10.1088/1751-8113/43/22/225303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over balanced bipartitions. We search for maximally multipartite entangled states, whose average purity is minimal, and recast this optimization problem into a problem of statistical mechanics, by introducing a cost function, a fictitious temperature and a partition function. By investigating the high-temperature expansion, we obtain the first three moments of the distribution. We find that the problem exhibits frustration.
引用
收藏
页数:33
相关论文
共 49 条
  • [21] Maximally multipartite entangled states
    Facchi, Paolo
    Florio, Giuseppe
    Parisi, Giorgio
    Pascazio, Saverio
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [22] Optimal eavesdropping in quantum cryptography .1. Information bound and optimal strategy
    Fuchs, CA
    Gisin, N
    Griffiths, RB
    Niu, CS
    Peres, A
    [J]. PHYSICAL REVIEW A, 1997, 56 (02): : 1163 - 1172
  • [23] Distribution of bipartite entanglement for random pure states
    Giraud, Olivier
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (11) : 2793 - 2801
  • [24] BELL THEOREM WITHOUT INEQUALITIES
    GREENBERGER, DM
    HORNE, MA
    SHIMONY, A
    ZEILINGER, A
    [J]. AMERICAN JOURNAL OF PHYSICS, 1990, 58 (12) : 1131 - 1143
  • [25] How entangled can two couples get?
    Higuchi, A
    Sudbery, A
    [J]. PHYSICS LETTERS A, 2000, 273 (04) : 213 - 217
  • [26] Mixed-state entanglement and distillation: Is there a "bound" entanglement in nature?
    Horodecki, M
    Horodecki, P
    Horodecki, R
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5239 - 5242
  • [27] Quantum entanglement
    Horodecki, Ryszard
    Horodecki, Pawel
    Horodecki, Michal
    Horodecki, Karol
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 865 - 942
  • [28] Complementarity and entanglement in bipartite qudit systems
    Jakob, Matthias
    Bergou, Janos A.
    [J]. PHYSICAL REVIEW A, 2007, 76 (05):
  • [29] Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity
    Kim, Jeong San
    Das, Anirban
    Sanders, Barry C.
    [J]. PHYSICAL REVIEW A, 2009, 79 (01):
  • [30] OPTIMIZATION BY SIMULATED ANNEALING
    KIRKPATRICK, S
    GELATT, CD
    VECCHI, MP
    [J]. SCIENCE, 1983, 220 (4598) : 671 - 680