Classical statistical mechanics approach to multipartite entanglement

被引:29
作者
Facchi, P. [1 ,2 ]
Florio, G. [2 ,3 ]
Marzolino, U. [4 ,5 ]
Parisi, G. [6 ,7 ]
Pascazio, S. [2 ,3 ]
机构
[1] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[3] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[4] Univ Trieste, Dipartimento Fis, I-34014 Trieste, Italy
[5] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy
[6] Univ Roma La Sapienza, Dipartimento Fis, CNR, INFM,Ctr Stat Mech & Complex, I-00185 Rome, Italy
[7] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
关键词
QUANTUM CRYPTOGRAPHY; PROBABILITY RELATIONS; STATE; ENTROPY;
D O I
10.1088/1751-8113/43/22/225303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over balanced bipartitions. We search for maximally multipartite entangled states, whose average purity is minimal, and recast this optimization problem into a problem of statistical mechanics, by introducing a cost function, a fictitious temperature and a partition function. By investigating the high-temperature expansion, we obtain the first three moments of the distribution. We find that the problem exhibits frustration.
引用
收藏
页数:33
相关论文
共 49 条
  • [1] Entanglement in many-body systems
    Amico, Luigi
    Fazio, Rosario
    Osterloh, Andreas
    Vedral, Vlatko
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (02) : 517 - 576
  • [2] Bennett C.H., 1984, Reviews of Modern Physics, V560, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, DOI 10.1103/REVMODPHYS.74.145, 10.1016/j.tcs.2014.05.025]
  • [3] COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES
    BENNETT, CH
    WIESNER, SJ
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (20) : 2881 - 2884
  • [4] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [5] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [6] Unextendible product bases and bound entanglement
    Bennett, CH
    DiVincenzo, DP
    Mor, T
    Shor, PW
    Smolin, JA
    Terhal, BM
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (26) : 5385 - 5388
  • [7] On maximal entanglement between two pairs in four-qubit pure states
    Brierley, S.
    Higuchi, A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) : 8455 - 8465
  • [8] Searching for highly entangled multi-qubit states
    Brown, IDK
    Stepney, S
    Sudbery, A
    Braunstein, SL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (05): : 1119 - 1131
  • [9] Characterizing entanglement
    Bruss, D
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) : 4237 - 4251
  • [10] Distributed entanglement
    Coffman, V
    Kundu, J
    Wootters, WK
    [J]. PHYSICAL REVIEW A, 2000, 61 (05): : 5