Multifractal Analysis of Complex Random Cascades

被引:18
作者
Barral, Julien [1 ]
Jin, Xiong [2 ]
机构
[1] Univ Paris 13, Dept Math, Inst Galilee, LAGA,UMR 7539, F-93430 Villetaneuse, France
[2] INRIA Rocquencourt, F-78153 Le Chesnay, France
关键词
HOLDER EXPONENTS; FORMALISM; SINGULARITIES; MARTINGALES; CONTINUITY; DIMENSIONS; REGULARITY; TURBULENCE; SPECTRUM; POINTS;
D O I
10.1007/s00220-010-1030-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We achieve the multifractal analysis of a class of complex valued statistically self-similar continuous functions. For we use multifractal formalisms associated with pointwise oscillation exponents of all orders. Our study exhibits new phenomena in multifractal analysis of continuous functions. In particular, we find examples of statistically self-similar such functions obeying the multifractal formalism and for which the support of the singularity spectrum is the whole interval [0, a].
引用
收藏
页码:129 / 168
页数:40
相关论文
共 55 条
[1]  
[Anonymous], 1957, J. Math. Pures Appl.
[2]  
Arbeiter M, 1996, MATH NACHR, V181, P5
[3]   Random cascades on wavelet dyadic trees [J].
Arneodo, A ;
Bacry, E ;
Muzy, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (08) :4142-4164
[4]   Random wavelet series [J].
Aubry, JM ;
Jaffard, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (03) :483-514
[5]   Log-infinitely divisible multifractal processes [J].
Bacry, E ;
Muzy, JF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (03) :449-475
[6]  
Barral J, 2004, P SYMP PURE MATH, V72, P3
[7]   From multifractal measures to multifractal wavelet series [J].
Barral, J ;
Seuret, S .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (05) :589-614
[8]   Generalized vector multiplicative cascades [J].
Barral, J .
ADVANCES IN APPLIED PROBABILITY, 2001, 33 (04) :874-895
[9]   Continuity of the multifractal spectrum of a random statistically self-similar measure [J].
Barral, J .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (04) :1027-1060
[10]  
BARRAL J, ANN APPL PR IN PRESS