A decoherence-free subspace in a charge quadrupole qubit

被引:49
作者
Friesen, Mark [1 ]
Ghosh, Joydip [1 ]
Eriksson, M. A. [1 ]
Coppersmith, S. N. [1 ]
机构
[1] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
关键词
QUANTUM COMPUTATION; GATE; TOMOGRAPHY; OPERATION; STATE;
D O I
10.1038/ncomms15923
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computing promises significant speed-up for certain types of computational problems. However, robust implementations of semiconducting qubits must overcome the effects of charge noise that currently limit coherence during gate operations. Here we describe a scheme for protecting solid-state qubits from uniform electric field fluctuations by generalizing the concept of a decoherence-free subspace for spins, and we propose a specific physical implementation: a quadrupole charge qubit formed in a triple quantum dot. The unique design of the quadrupole qubit enables a particularly simple pulse sequence for suppressing the effects of noise during gate operations. Simulations yield gate fidelities 10-1,000 times better than traditional charge qubits, depending on the magnitude of the environmental noise. Our results suggest that any qubit scheme employing Coulomb interactions (for example, encoded spin qubits or two-qubit gates) could benefit from such a quadrupolar design.
引用
收藏
页数:7
相关论文
共 62 条
[1]   Quantum dot spin cellular automata for realizing a quantum processor [J].
Bayat, Abolfazl ;
Creffield, Charles E. ;
Jefferson, John H. ;
Pepper, Michael ;
Bose, Sougato .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (10)
[2]   Qubit Architecture with High Coherence and Fast Tunable Coupling [J].
Chen, Yu ;
Neill, C. ;
Roushan, P. ;
Leung, N. ;
Fang, M. ;
Barends, R. ;
Kelly, J. ;
Campbell, B. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Megrant, A. ;
Mutus, J. Y. ;
O'Malley, P. J. J. ;
Quintana, C. M. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Geller, Michael R. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (22)
[3]   Mesoscopic cavity quantum electrodynamics with quantum dots [J].
Childress, L ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW A, 2004, 69 (04) :042302-1
[4]   Quantum computation using decoherence-free states of the physical operator algebra [J].
De Filippo, S .
PHYSICAL REVIEW A, 2000, 62 (05) :052307-052301
[5]   Charge Noise Spectroscopy Using Coherent Exchange Oscillations in a Singlet-Triplet Qubit [J].
Dial, O. E. ;
Shulman, M. D. ;
Harvey, S. P. ;
Bluhm, H. ;
Umansky, V. ;
Yacoby, A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (14)
[6]   Universal quantum computation with the exchange interaction [J].
DiVincenzo, DP ;
Bacon, D ;
Kempe, J ;
Burkard, G ;
Whaley, KB .
NATURE, 2000, 408 (6810) :339-342
[7]   Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment [J].
Duan, LM ;
Guo, GC .
PHYSICAL REVIEW A, 1998, 57 (02) :737-741
[8]   Isotopically enhanced triple-quantum-dot qubit [J].
Eng, Kevin ;
Ladd, Thaddeus D. ;
Smith, Aaron ;
Borselli, Matthew G. ;
Kiselev, Andrey A. ;
Fong, Bryan H. ;
Holabird, Kevin S. ;
Hazard, Thomas M. ;
Huang, Biqin ;
Deelman, Peter W. ;
Milosavljevic, Ivan ;
Schmitz, Adele E. ;
Ross, Richard S. ;
Gyure, Mark F. ;
Hunter, Andrew T. .
SCIENCE ADVANCES, 2015, 1 (04)
[9]   Effective Hamiltonian for the hybrid double quantum dot qubit [J].
Ferraro, E. ;
De Michielis, M. ;
Mazzeo, G. ;
Fanciulli, M. ;
Prati, E. .
QUANTUM INFORMATION PROCESSING, 2014, 13 (05) :1155-1173
[10]   Dipole Coupling of a Double Quantum Dot to a Microwave Resonator [J].
Frey, T. ;
Leek, P. J. ;
Beck, M. ;
Blais, A. ;
Ihn, T. ;
Ensslin, K. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2012, 108 (04)