Self-Assembly of Nanoparticle-Spiked Pillar Arrays for Plasmonic Biosensing

被引:68
作者
Park, Sung-Gyu [1 ]
Xiao, Xiaofei [2 ]
Min, Jouha [3 ]
Mun, ChaeWon [1 ]
Jung, Ho Sang [1 ]
Giannini, Vincenzo [2 ,4 ]
Weissleder, Ralph [3 ,5 ,6 ]
Maier, Stefan A. [2 ,7 ]
Im, Hyungsoon [3 ,5 ]
Kim, Dong-Ho [1 ]
机构
[1] KIMS, Adv Nanosurface Dept, Chang Won 51508, Gyeongnam, South Korea
[2] Imperial Coll London, Blackett Lab, Dept Phys, London SW7 2AZ, England
[3] Massachusetts Gen Hosp, CSB, Boston, MA 02114 USA
[4] CSIC, IEM, Serrano 121, Madrid 28006, Spain
[5] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
[6] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA
[7] Ludwig Maximilians Univ Munchen, Fak Phys, Nanoinst Munchen, D-80539 Munich, Germany
基金
英国工程与自然科学研究理事会;
关键词
3D nanostructures; plasmonic biosensors; spherical metal nanoparticles; surface diffusion; surface energy; ENHANCED RAMAN-SCATTERING; SURFACE-ENERGY; NANOSTRUCTURES; RESONANCE;
D O I
10.1002/adfm.201904257
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic biosensors have demonstrated superior performance in detecting various biomolecules with high sensitivity through simple assays. Scaled-up, reproducible chip production with a high density of hotspots in a large area has been technically challenging, limiting the commercialization and clinical translation of these biosensors. A new fabrication method for 3D plasmonic nanostructures with a high density, large volume of hotspots and therefore inherently improved detection capabilities is developed. Specifically, Au nanoparticle-spiked Au nanopillar arrays are prepared by utilizing enhanced surface diffusion of adsorbed Au atoms on a slippery Au nanopillar arrays through a simple vacuum process. This process enables the direct formation of a high density of spherical Au nanoparticles on the 1 nm-thick dielectric coated Au nanopillar arrays without high-temperature annealing, which results in multiple plasmonic coupling, and thereby large effective volume of hotspots in 3D spaces. The plasmonic nanostructures show signal enhancements over 8.3 x 10(8)-fold for surface-enhanced Raman spectroscopy and over 2.7 x 10(2)-fold for plasmon-enhanced fluorescence. The 3D plasmonic chip is used to detect avian influenza-associated antibodies at 100 times higher sensitivity compared with unstructured Au substrates for plasmon-enhanced fluorescence detection. Such a simple and scalable fabrication of highly sensitive 3D plasmonic nanostructures provides new opportunities to broaden plasmon-enhanced sensing applications.
引用
收藏
页数:9
相关论文
共 39 条
[21]   Self-assembled monolayers of thiolates on metals as a form of nanotechnology [J].
Love, JC ;
Estroff, LA ;
Kriebel, JK ;
Nuzzo, RG ;
Whitesides, GM .
CHEMICAL REVIEWS, 2005, 105 (04) :1103-1169
[22]  
Maier S.A., 2007, PLASMONICS FUNDAMENT
[23]   Controlled-reflectance surfaces with film-coupled colloidal nanoantennas [J].
Moreau, Antoine ;
Ciraci, Cristian ;
Mock, Jack J. ;
Hill, Ryan T. ;
Wang, Qiang ;
Wiley, Benjamin J. ;
Chilkoti, Ashutosh ;
Smith, David R. .
NATURE, 2012, 492 (7427) :86-+
[24]   Extinction measurements of metallic nanoparticles arrays as a way to explore the single nanoparticle plasmon resonances [J].
Movsesyan, Artur ;
Baudrion, Anne-Laure ;
Adam, Pierre-Michel .
OPTICS EXPRESS, 2018, 26 (05) :6439-6445
[25]   An autonomous photosynthetic device in which all charge carriers derive from surface plasmons [J].
Mubeen, Syed ;
Lee, Joun ;
Singh, Nirala ;
Kraemer, Stephan ;
Stucky, Galen D. ;
Moskovits, Martin .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :247-251
[26]   Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide [J].
Mubeen, Syed ;
Zhang, Shunping ;
Kim, Namhoon ;
Lee, Seungjoon ;
Kraemer, Stephan ;
Xu, Hongxing ;
Moskovits, Martin .
NANO LETTERS, 2012, 12 (04) :2088-2094
[27]  
Ohring M., 2001, MAT SCI THIN FILMS
[28]   Chemically imaging bacteria with super-resolution SERS on ultra-thin silver substrates [J].
Olson, Aeli P. ;
Spies, Kelsey B. ;
Browning, Anna C. ;
Soneral, Paula A. G. ;
Lindquist, Nathan C. .
SCIENTIFIC REPORTS, 2017, 7
[29]   Ultrahigh Field Enhancement and Photoresponse in Atomically Separated Arrays of Plasmonic Dimers [J].
Paria, Debadrita ;
Roy, Kallol ;
Singh, Haobijam Johnson ;
Kumar, Shishir ;
Raghavan, Srinivasan ;
Ghosh, Arindam ;
Ghosh, Ambarish .
ADVANCED MATERIALS, 2015, 27 (10) :1751-1758
[30]  
Park S.-G., 2018, APPL SPECTROSC REV