Incorporating Ionic Paths into 3D Conducting Scaffolds for High Volumetric and Areal Capacity, High Rate Lithium-Metal Anodes

被引:183
作者
Zhang, Chanyuan [1 ]
Liu, Shan [1 ]
Li, Guojie [1 ]
Zhang, Cuijuan [1 ]
Liu, Xingjiang [1 ]
Luo, Jiayan [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Collaborat Innovat Ctr Chem Sci & Engn, Key Lab Green Chem Technol,Minist Educ, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-metal anode; mixed conductors; rate performance; volumetric and areal capacity; SOLID-STATE; RECHARGEABLE BATTERIES; CURRENT COLLECTOR; CYCLE-LIFE; DEPOSITION; ELECTRODES; POLYMER;
D O I
10.1002/adma.201801328
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-metal batteries can fulfill the ever-growing demand of the high-energy-density requirement of electronics and electric vehicles. However, lithium-metal anodes have many challenges, especially their inhomogeneous dendritic formation and infinite dimensional change during cycling. 3D scaffold design can mitigate electrode thickness fluctuation and regulate the deposition morphology. However, in an insulating or ion-conducting matrix, Li as the exclusive electron conductor can become disconnected, whereas in an electron-conducting matrix, the rate performance is restrained by the sluggish Li+ diffusion. Herein, the advantages of both ion- and electron-conducting paths are integrated into a mixed scaffold. In the mixed ion- and electron-conducting network, the charge diffusion and distribution are facilitated leading to significantly improved electrochemical performance. By incorporating Li6.4La3Zr2Al0.2O12 nanoparticles into 3D carbon nanofibers scaffold, the Li metal anodes can deliver areal capacity of 16 mAh cm(-2), volumetric capacity of 1600 mAh cm(-3), and remain stable over 1000 h under current density of 5 mA cm(-2). The volumetric and areal capacities as well as the rate capability are among the highest values reported. It is anticipated that the 3D mixed scaffold could be combined with further electrolytes and cathodes to develop high-performance energy systems.
引用
收藏
页数:7
相关论文
共 50 条
[1]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[2]   ELECTRICAL PROPERTIES OF ARC-EVAPORATED CARBON FILMS [J].
BLUE, MD ;
DANIELSON, GC .
JOURNAL OF APPLIED PHYSICS, 1957, 28 (05) :583-586
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[4]   The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries [J].
Byles, B. W. ;
Palapati, N. K. R. ;
Subramanian, A. ;
Pomerantseva, E. .
APL MATERIALS, 2016, 4 (04)
[5]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[6]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[7]   Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Song, Wei-Li ;
Fan, Li-Zhen ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (24)
[8]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099
[9]   High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite [J].
Han, Fudong ;
Yue, Jie ;
Fan, Xiulin ;
Gao, Tao ;
Luo, Chao ;
Ma, Zhaohui ;
Suo, Liumin ;
Wang, Chunsheng .
NANO LETTERS, 2016, 16 (07) :4521-4527
[10]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]