Genericity and amalgamation of classes of Banach spaces

被引:35
作者
Argyros, Spiros A. [1 ]
Dodos, Pandelis [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Fac Sci Appl, Athens 15780, Greece
关键词
Banach spaces; co-analytic ranks; interpolation method; strong boundedness; schauder tree bases; thin sets; universal spaces;
D O I
10.1016/j.aim.2006.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study universality problems in Banach space theory. We show that if A is an analytic class, in the Effros-Borel structure of subspaces of C ([0, 1]), of non-universal separable Banach spaces, then there exists a non-universal separable Banach space Y, with a Schauder basis, that contains isomorphs of each member of A with the bounded approximation property. The proof is based on the amalgamation technique of a class C of separable Banach spaces, introduced in the paper. We show, among others, that there exists a separable Banach space R not containing L-1 (0, 1) such that the indices beta and r(ND) are unbounded on the set of Baire-1 elements of the ball of the double dual R** of R. This answers two questions of H.P. Rosenthal. We also introduce the concept of a strongly bounded class of separable Banach spaces. A class C of separable Banach spaces is strongly bounded if for every analytic subset A of C there exists Y is an element of C that contains all members of A up to isomorphism. We show that several natural classes of separable Banach spaces are strongly bounded, among them the class of non-universal spaces with a Schauder basis, the class of reflexive spaces with a Schauder basis, the class of spaces with a shrinking Schauder basis and the class of spaces with Schauder basis not containing a minimal Banach space X. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:666 / 748
页数:83
相关论文
共 54 条
[1]   A separable space with no Schauder decomposition [J].
Allexandrov, G ;
Kutzarova, D ;
Plichko, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (09) :2805-2806
[2]  
ALSPACH DE, 1992, DISS MATH, V321
[3]  
Argyros S., 2003, HDB GEOMETRY BANACH, V2
[4]  
ARGYROS S, 2004, MEM AM MATH SOC, V170, P806
[5]  
Argyros S.A., 2005, ADV COURSES MATH
[6]   An indecomposable and unconditionally saturated Banach space [J].
Argyros, SA ;
Manoussakis, A .
STUDIA MATHEMATICA, 2003, 159 (01) :1-32
[7]   Optimal sequences of continuous functions converging to a Baire-1 function [J].
Argyros, SA ;
Kanellopoulos, V .
MATHEMATISCHE ANNALEN, 2002, 324 (04) :689-729
[8]   Interpolating hereditarily indecomposable Banach spaces [J].
Argyros, SA ;
Felouzis, V .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :243-294
[9]   A universal property of reflexive hereditarily indecomposable Banach spaces [J].
Argyros, SA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (11) :3231-3239
[10]  
Bellenot S. F., 1989, CONTEMP MATH, V85, P19