Mathematical theory of N-body quantum systems

被引:0
作者
Hunziker, W [1 ]
机构
[1] ETH Honggerberg, Inst Theoret Phys, CH-8093 Zurich, Switzerland
来源
HELVETICA PHYSICA ACTA | 1997年 / 71卷 / 01期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A short history of the subject is given at the end of the paper. The main part of the notes describes a new proof of asymptotic completeness for short-range forces, based on joint work with I.M. Sigal [21].
引用
收藏
页码:26 / 43
页数:18
相关论文
共 39 条
[1]  
Agmon S., 1982, MATH NOTES
[2]  
Amrein W. O., 1973, Helvetica Physica Acta, V46, P635
[3]  
[Anonymous], MATH USSR SB
[4]  
[Anonymous], 1994, J AM MATH SOC
[5]   SPECTRAL PROPERTIES OF MANY-BODY SCHRODINGER OPERATORS WITH DILATATION-ANALYTIC INTERACTIONS [J].
BALSLEV, E ;
COMBES, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (04) :280-&
[6]   ASYMPTOTIC-BEHAVIOR OF EIGENFUNCTIONS FOR MULTIPARTICLE SCHRODINGER OPERATORS [J].
COMBES, JM ;
THOMAS, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 34 (04) :251-270
[7]  
Cycon H.L., 1987, TEXTS MONOGRAPHS PHY
[8]   TIME-DEPENDENT APPROACH TO COMPLETENESS OF MULTIPARTICLE QUANTUM SYSTEMS [J].
DEIFT, P ;
SIMON, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (05) :573-583
[9]   POINTWISE BOUNDS ON EIGENFUNCTIONS AND WAVE PACKETS IN N-BODY QUANTUM SYSTEMS-IV [J].
DEIFT, P ;
HUNZIKER, W ;
SIMON, B ;
VOCK, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 64 (01) :1-34
[10]   ASYMPTOTIC COMPLETENESS OF LONG-RANGE N-BODY QUANTUM-SYSTEMS [J].
DEREZINSKI, J .
ANNALS OF MATHEMATICS, 1993, 138 (02) :427-476