Mitochondria Instance Segmentation in Electron Microscopy Image Volumes using 3D Deep Learning Networks

被引:0
作者
Nguyen, Nguyen P. [1 ]
White, Tommi A. [2 ]
Bunyak, Filiz [1 ]
机构
[1] Univ Missouri, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Biochem, Columbia, MO USA
来源
2021 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR) | 2021年
关键词
mitochondria; electron microscopy; U-Net; convolutional long-short term memory (CLSTM);
D O I
10.1109/AIPR52630.2021.9762176
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation of mitochondria in electron microscopy (EM) images is a challenging task due to complex shapes of mitochondria and other sub-cellular structures, background clutter, weak boundaries, low contrast, low signal-to-noise ratio, touching mitochondria, and large data size. For robust and accurate segmentation of individual mitochondria within an electron microscopy image volume, we propose a 3D deep convolutional neural network. The proposed network extends the classical U-Net semantic segmentation network with a convolutional long-short term memory (3D CLSTM U-NET). This extension allows better integration of 3D image features at different scales and abstraction levels. The proposed network generates two outputs, one corresponding to mitochondrial regions, and the other to mitochondrial boundaries. These region and boundary cues are used by a watershed segmentation module for identification of individual mitochondria. Our experiments on both animal and human datasets from MitoEM challenge showed promising results. The proposed pipeline achieved dice scores of 0.94 and 0.91 for the rat and human datasets respectively, and mAPs scores of 0.73 and 0.65.
引用
收藏
页数:6
相关论文
共 16 条
[1]   Mitochondrial shape changes: orchestrating cell pathophysiology [J].
Campello, Silvia ;
Scorrano, Luca .
EMBO REPORTS, 2010, 11 (09) :678-684
[2]   Mitochondrial dynamics in cell death and neurodegeneration [J].
Cho, Dong-Hyung ;
Nakamura, Tomohiro ;
Lipton, Stuart A. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2010, 67 (20) :3435-3447
[3]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[4]   Mitochondrial Dysfunction in Neurodegenerative Diseases and Cancer [J].
de Moura, Michelle Barbi ;
dos Santos, Lucas Santana ;
Van Houten, Bennett .
ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2010, 51 (05) :391-405
[5]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[6]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[7]  
Jadon S., 2020, ARXIV
[8]  
Kingma D. P., 2015, 3 INT C LEARN REPR I
[9]  
Liu L., 2020, IEEE T MED IMAGING
[10]   TOPOGRAPHIC DISTANCE AND WATERSHED LINES [J].
MEYER, F .
SIGNAL PROCESSING, 1994, 38 (01) :113-125