An exploratory data analysis protocol for identifying problems in continuous movement data

被引:11
作者
Graser, A. [1 ,2 ]
机构
[1] AIT Austrian Inst Technol, Ctr Energy, Vienna, Austria
[2] Univ Salzburg, Dept Geoinformat Z GIS, Salzburg, Austria
关键词
Exploratory data analysis; movement analytics; trajectory analysis; movement data;
D O I
10.1080/17489725.2021.1900612
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Movement datasets are often complex and require sophisticated processing and analysis. A thorough understanding of the dataset is needed to choose the right methods and to interpret their results. Misunderstandings and violations of assumptions about dataset characteristics can lead to flawed analysis results and wrong conclusions. To address this challenge, we propose a novel protocol for the systematic exploration of movement datasets. The individual protocol steps address the different types of movement data problems. The exploration tools recommended at each step are specifically tailored to identifying potential problems and avoiding common pitfalls when working with global navigation satellite system (GNSS) tracking data, commonly referred to as GPS tracks. However, the general steps should be transferable to continuous movement datasets with different characteristics, such as video trajectories. Furthermore, we provide an open source implementation of our protocol in the form of a Jupyter notebook accompanying this paper.
引用
收藏
页码:89 / 117
页数:29
相关论文
共 20 条
[1]   Understanding movement data quality [J].
Andrienko, Gennady ;
Andrienko, Natalia ;
Fuchs, Georg .
JOURNAL OF LOCATION BASED SERVICES, 2016, 10 (01) :31-46
[2]   Visual exploration of movement and event data with interactive time masks [J].
Andrienko, Natalia ;
Andrienko, Gennady ;
Camossi, Elena ;
Claramunt, Christophe ;
Cordero Garcia, Jose Manuel ;
Fuchs, Georg ;
Hadzagic, Melita ;
Jousselme, Anne-Laure ;
Ray, Cyril ;
Scarlatti, David ;
Vouros, George .
Visual Informatics, 2017, 1 (01) :25-39
[3]  
[Anonymous], 2010, P 9 PYTHON SCI C, DOI DOI 10.25080/MAJORA-92BF1922-00A
[4]  
[Anonymous], 2013, Visual Analytics of Movement
[5]  
[Anonymous], 2020, **DATA OBJECT**, DOI [10.5281/zenodo.4067057, DOI 10.5281/ZENODO.4067057]
[6]   Analysis and visualisation of movement: an interdisciplinary review [J].
Demsar, Urska ;
Buchin, Kevin ;
Cagnacci, Francesca ;
Safi, Kamran ;
Speckmann, Bettina ;
Van De Weghe, Nico ;
Weiskopf, Daniel ;
Weibel, Robert .
MOVEMENT ECOLOGY, 2015, 3
[7]   Progress in computational movement analysis - towards movement data science [J].
Dodge, Somayeh ;
Gao, Song ;
Tomko, Martin ;
Weibel, Robert .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2020, 34 (12) :2395-2400
[8]   A Data Science Framework for Movement [J].
Dodge, Somayeh .
GEOGRAPHICAL ANALYSIS, 2021, 53 (01) :92-112
[9]   Analysis of movement data [J].
Dodge, Somayeh ;
Weibel, Robert ;
Ahearn, Sean C. ;
Buchin, Maike ;
Miller, Jennifer A. .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2016, 30 (05) :825-834
[10]  
Dragaschnig M., 2020, KN-J CARTOGR GEOGR I, P1, DOI [10.1007/ s42489-020-00057-w, DOI 10.1007/S42489-020-00057-W]