Beyond density matrices: Geometric quantum states

被引:12
作者
Anza, Fabio [1 ,2 ]
Crutchfield, James P. [1 ,2 ]
机构
[1] Univ Calif Davis, Complex Sci Ctr, One Shields Ave, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA
关键词
MECHANICS;
D O I
10.1103/PhysRevA.103.062218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In quantum mechanics, states are described by density matrices. Though their probabilistic interpretation is rooted in ensemble theory, density matrices embody a known shortcoming. They do not completely express the physical realization of an ensemble. Conveniently, the outcome statistics of projective and positive operator-valued measurements do not depend on the ensemble realization, only on the density matrix. Here, we show how the geometric approach to quantum mechanics tracks ensemble realizations. We do so in two concrete cases of a finite-dimensional quantum system interacting with another one with (i) finite-dimensional Hilbert space, relevant for quantum thermodynamics, and (ii) infinite-dimensional Hilbert space, relevant for state-manipulation protocols.
引用
收藏
页数:9
相关论文
共 41 条
  • [21] ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS
    ECKMANN, JP
    RUELLE, D
    [J]. REVIEWS OF MODERN PHYSICS, 1985, 57 (03) : 617 - 656
  • [22] Gibbons G. W., 1992, Journal of Geometry and Physics, V8, P147, DOI 10.1016/0393-0440(92)90046-4
  • [23] Heinosaari T., 2012, The Mathematical Language of Quantum Theory
  • [24] Quantum-theoretical reinterpretation of kinematic and mechanical connections
    Heisenberg, W
    [J]. ZEITSCHRIFT FUR PHYSIK, 1925, 33 : 879 - 893
  • [25] QUANTUM-MECHANICS AS A CLASSICAL-THEORY
    HESLOT, A
    [J]. PHYSICAL REVIEW D, 1985, 31 (06): : 1341 - 1348
  • [26] GEOMETRIZATION OF QUANTUM-MECHANICS
    KIBBLE, TWB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (02) : 189 - 201
  • [27] Geometrical description of quantum mechanics-transformations and dynamics
    Marmo, G.
    Volkert, G. F.
    [J]. PHYSICA SCRIPTA, 2010, 82 (03)
  • [28] Neumann J. V, 1932, Mathematische Grundlagen der Quantenmechanik
  • [29] Nielsen M. A., 2019, Quantum Computation and Quantum Information
  • [30] GEOMETRICAL DESCRIPTION OF BERRYS PHASE
    PAGE, DN
    [J]. PHYSICAL REVIEW A, 1987, 36 (07): : 3479 - 3481