Beyond density matrices: Geometric quantum states

被引:14
作者
Anza, Fabio [1 ,2 ]
Crutchfield, James P. [1 ,2 ]
机构
[1] Univ Calif Davis, Complex Sci Ctr, One Shields Ave, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA
关键词
MECHANICS;
D O I
10.1103/PhysRevA.103.062218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In quantum mechanics, states are described by density matrices. Though their probabilistic interpretation is rooted in ensemble theory, density matrices embody a known shortcoming. They do not completely express the physical realization of an ensemble. Conveniently, the outcome statistics of projective and positive operator-valued measurements do not depend on the ensemble realization, only on the density matrix. Here, we show how the geometric approach to quantum mechanics tracks ensemble realizations. We do so in two concrete cases of a finite-dimensional quantum system interacting with another one with (i) finite-dimensional Hilbert space, relevant for quantum thermodynamics, and (ii) infinite-dimensional Hilbert space, relevant for state-manipulation protocols.
引用
收藏
页数:9
相关论文
共 41 条
[21]  
Gibbons G. W., 1992, Journal of Geometry and Physics, V8, P147, DOI 10.1016/0393-0440(92)90046-4
[22]  
Greiner W., 1965, Classical theoretical physics
[23]  
Heinosaari T., 2012, MATH LANGUAGE QUANTU, DOI 10.1017/cbo9781139031103
[24]   Quantum-theoretical reinterpretation of kinematic and mechanical connections [J].
Heisenberg, W .
ZEITSCHRIFT FUR PHYSIK, 1925, 33 :879-893
[25]   QUANTUM-MECHANICS AS A CLASSICAL-THEORY [J].
HESLOT, A .
PHYSICAL REVIEW D, 1985, 31 (06) :1341-1348
[26]   GEOMETRIZATION OF QUANTUM-MECHANICS [J].
KIBBLE, TWB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (02) :189-201
[27]   Geometrical description of quantum mechanics-transformations and dynamics [J].
Marmo, G. ;
Volkert, G. F. .
PHYSICA SCRIPTA, 2010, 82 (03)
[28]  
Mielnik B., 1968, Commun. Math. Phys., V9, P55, DOI 10.1007/BF01654032
[29]  
Neumann J., 1932, Mathematische Grundlagen der Quantenmechanik
[30]  
Neumann J.v., 1927, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, P273