Beyond density matrices: Geometric quantum states

被引:14
作者
Anza, Fabio [1 ,2 ]
Crutchfield, James P. [1 ,2 ]
机构
[1] Univ Calif Davis, Complex Sci Ctr, One Shields Ave, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA
关键词
MECHANICS;
D O I
10.1103/PhysRevA.103.062218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In quantum mechanics, states are described by density matrices. Though their probabilistic interpretation is rooted in ensemble theory, density matrices embody a known shortcoming. They do not completely express the physical realization of an ensemble. Conveniently, the outcome statistics of projective and positive operator-valued measurements do not depend on the ensemble realization, only on the density matrix. Here, we show how the geometric approach to quantum mechanics tracks ensemble realizations. We do so in two concrete cases of a finite-dimensional quantum system interacting with another one with (i) finite-dimensional Hilbert space, relevant for quantum thermodynamics, and (ii) infinite-dimensional Hilbert space, relevant for state-manipulation protocols.
引用
收藏
页数:9
相关论文
共 41 条
[1]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[2]  
[Anonymous], 2002, Cambridge Series in Statistical and Probabilistic Mathematics
[3]  
Anza F., ARXIV200808683
[4]  
Anza F., ARXIV200808679
[5]  
ASHTEKAR A, 1995, AIP CONF PROC, V342, P471, DOI 10.1063/1.48786
[6]  
Ashtekar A., 1999, EINSTEINS PATH, P23
[7]   An elementary introduction to the geometry of quantum states with pictures [J].
Avron, J. ;
Kenneth, O. .
REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (02)
[8]  
Beck C., 1993, Thermodynamics of Chaotic Systems
[9]  
Bengtsson I., 2017, Geometry of Quantum States: An Introduction to Quantum Entanglement, V2nd
[10]   The quantum canonical ensemble [J].
Brody, DC ;
Hughston, LP .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) :6502-6508