Beyond density matrices: Geometric quantum states

被引:12
作者
Anza, Fabio [1 ,2 ]
Crutchfield, James P. [1 ,2 ]
机构
[1] Univ Calif Davis, Complex Sci Ctr, One Shields Ave, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA
关键词
MECHANICS;
D O I
10.1103/PhysRevA.103.062218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In quantum mechanics, states are described by density matrices. Though their probabilistic interpretation is rooted in ensemble theory, density matrices embody a known shortcoming. They do not completely express the physical realization of an ensemble. Conveniently, the outcome statistics of projective and positive operator-valued measurements do not depend on the ensemble realization, only on the density matrix. Here, we show how the geometric approach to quantum mechanics tracks ensemble realizations. We do so in two concrete cases of a finite-dimensional quantum system interacting with another one with (i) finite-dimensional Hilbert space, relevant for quantum thermodynamics, and (ii) infinite-dimensional Hilbert space, relevant for state-manipulation protocols.
引用
收藏
页数:9
相关论文
共 41 条
  • [1] GEOMETRY OF QUANTUM EVOLUTION
    ANANDAN, J
    AHARONOV, Y
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (14) : 1697 - 1700
  • [2] [Anonymous], 1995, THERMODYNAMICS STAT
  • [3] [Anonymous], 1968, Communications in Mathematical Physics, DOI [10.1007/BF01654032, DOI 10.1007/BF01654032]
  • [4] [Anonymous], 1995, Thermodynamics of chaotic systems: an introduction
  • [5] [Anonymous], 1999, EINSTEINS PATH
  • [6] Anza F., ARXIV200808683
  • [7] Anza F., ARXIV200808679
  • [8] ASHTEKAR A, 1995, AIP CONF PROC, V342, P471, DOI 10.1063/1.48786
  • [9] An elementary introduction to the geometry of quantum states with pictures
    Avron, J.
    Kenneth, O.
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (02)
  • [10] Bengtsson I, 2006, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010