Numerical method with high order accuracy for solving a anomalous subdiffusion equation

被引:0
作者
Chen, Y. [1 ]
Chen, Chang-Ming [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Anomalous subdiffusion equation; Numerical method with high order accuracy; Convergence; Stability; Solvability; Fourier analysis; FRACTIONAL DIFFUSION EQUATION; FINITE-DIFFERENCE SCHEME; SUB-DIFFUSION; BOUNDARY-CONDITIONS; STABILITY; SYSTEMS;
D O I
10.1007/s11075-015-0062-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a numerical method with second order temporal accuracy and fourth order spatial accuracy is developed to solve a anomalous subdiffusion equation; by Fourier analysis, the convergence, stability and solvability of the numerical method are analyzed; the theoretical results are strongly supported by the numerical experiment.
引用
收藏
页码:687 / 703
页数:17
相关论文
共 30 条
[11]   Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations [J].
Henry, B. I. ;
Langlands, T. A. M. ;
Wearne, S. L. .
PHYSICAL REVIEW E, 2006, 74 (03)
[12]   Numerical method for two dimensional fractional reaction subdiffusion equation [J].
Huang, H. ;
Cao, X. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08) :1961-1973
[13]   Anomalous diffusion with absorbing boundary [J].
Kantor, Yacov ;
Kardar, Mehran .
PHYSICAL REVIEW E, 2007, 76 (06)
[14]   Subdiffusion in a system with a thick membrane [J].
Kosztolowicz, Tadeusz .
JOURNAL OF MEMBRANE SCIENCE, 2008, 320 (1-2) :492-499
[15]   Anomalous diffusion equation: Application to cosmic ray transport [J].
Lagutin, AA ;
Uchaikin, VV .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 201 (01) :212-216
[16]   Anomalous subdiffusion with multispecies linear reaction dynamics [J].
Langlands, T. A. M. ;
Henry, B. I. ;
Wearne, S. L. .
PHYSICAL REVIEW E, 2008, 77 (02)
[17]   The accuracy and stability of an implicit solution method for the fractional diffusion equation [J].
Langlands, TAM ;
Henry, BI .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) :719-736
[18]   MODELING SUBDIFFUSION USING REACTION DIFFUSION SYSTEMS [J].
Mommer, Mario S. ;
Lebiedz, Dirk .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (01) :112-132
[19]   Subdiffusion in time-averaged, confined random walks [J].
Neusius, Thomas ;
Sokolov, Igor M. ;
Smith, Jeremy C. .
PHYSICAL REVIEW E, 2009, 80 (01)
[20]   Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions [J].
Ren, Jincheng ;
Sun, Zhi-Zhong ;
Zhao, Xuan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) :456-467