Numerical method with high order accuracy for solving a anomalous subdiffusion equation

被引:0
作者
Chen, Y. [1 ]
Chen, Chang-Ming [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Anomalous subdiffusion equation; Numerical method with high order accuracy; Convergence; Stability; Solvability; Fourier analysis; FRACTIONAL DIFFUSION EQUATION; FINITE-DIFFERENCE SCHEME; SUB-DIFFUSION; BOUNDARY-CONDITIONS; STABILITY; SYSTEMS;
D O I
10.1007/s11075-015-0062-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a numerical method with second order temporal accuracy and fourth order spatial accuracy is developed to solve a anomalous subdiffusion equation; by Fourier analysis, the convergence, stability and solvability of the numerical method are analyzed; the theoretical results are strongly supported by the numerical experiment.
引用
收藏
页码:687 / 703
页数:17
相关论文
共 30 条
[1]   A Fourier method for the fractional diffusion equation describing sub-diffusion [J].
Chen, Chang-Ming ;
Liu, F. ;
Turner, I. ;
Anh, V. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) :886-897
[2]  
Chen CM, 2012, MATH COMPUT, V81, P345, DOI 10.1090/S0025-5718-2011-02447-6
[3]   NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION [J].
Chen, Chang-Ming ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) :1740-1760
[4]   Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation [J].
Chen, Chang-Ming ;
Liu, Fawang ;
Turner, Ian ;
Anh, Vo .
NUMERICAL ALGORITHMS, 2010, 54 (01) :1-21
[5]   Compact alternating direction implicit method for two-dimensional time fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) :2621-2633
[6]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[7]   A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions [J].
Gao, Guang-hua ;
Sun, Zhi-zhong ;
Zhang, Ya-nan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (07) :2865-2879
[8]   A compact finite difference scheme for the fractional sub-diffusion equations [J].
Gao, Guang-hua ;
Sun, Zhi-zhong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (03) :586-595
[9]  
Gu YT, 2010, CMES-COMP MODEL ENG, V56, P303
[10]   Analysis of Reaction-Diffusion Systems with Anomalous Subdiffusion [J].
Haugh, Jason M. .
BIOPHYSICAL JOURNAL, 2009, 97 (02) :435-442