Macrophages as tools and targets in cancer therapy

被引:1163
作者
Mantovani, Alberto [1 ,2 ,3 ]
Allavena, Paola [1 ,2 ]
Marchesi, Federica [2 ,4 ]
Garlanda, Cecilia [1 ,2 ]
机构
[1] Humanitas Univ, Dept Biomed Sci, Milan, Italy
[2] IRCCS Humanitas Res Hosp, Milan, Italy
[3] Queen Mary Univ London, William Harvey Res Inst, London, England
[4] Univ Milan, Dept Med Biotechnol & Translat Med, Milan, Italy
关键词
TUMOR-ASSOCIATED MACROPHAGES; IMMUNE CHECKPOINT BLOCKADE; HEMATOPOIETIC STEM-CELLS; C-RECEPTOR POLYMORPHISMS; MONOCLONAL-ANTIBODY; PANCREATIC-CANCER; MYELOID CELLS; IFN-GAMMA; PHASE-I; INFILTRATING MACROPHAGES;
D O I
10.1038/s41573-022-00520-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Macrophages can promote tumorigenesis and enhance the antitumour response. This Review discusses the molecular mechanisms underlying the reprogramming of macrophages in the tumour microenvironment and provides an overview of macrophage-targeted therapies for the treatment of cancer. Tumour-associated macrophages are an essential component of the tumour microenvironment and have a role in the orchestration of angiogenesis, extracellular matrix remodelling, cancer cell proliferation, metastasis and immunosuppression, as well as in resistance to chemotherapeutic agents and checkpoint blockade immunotherapy. Conversely, when appropriately activated, macrophages can mediate phagocytosis of cancer cells and cytotoxic tumour killing, and engage in effective bidirectional interactions with components of the innate and adaptive immune system. Therefore, they have emerged as therapeutic targets in cancer therapy. Macrophage-targeting strategies include inhibitors of cytokines and chemokines involved in the recruitment and polarization of tumour-promoting myeloid cells as well as activators of their antitumorigenic and immunostimulating functions. Early clinical trials suggest that targeting negative regulators (checkpoints) of myeloid cell function indeed has antitumor potential. Finally, given the continuous recruitment of myelomonocytic cells into tumour tissues, macrophages are candidates for cell therapy with the development of chimeric antigen receptor effector cells. Macrophage-centred therapeutic strategies have the potential to complement, and synergize with, currently available tools in the oncology armamentarium.
引用
收藏
页码:799 / 820
页数:22
相关论文
共 279 条
[21]   Podoplanin-Expressing Macrophages Promote Lymphangiogenesis and Lymphoinvasion in Breast Cancer [J].
Bieniasz-Krzywiec, Pawel ;
Martin-Perez, Rosa ;
Ehling, Manuel ;
Garcia-Caballero, Melissa ;
Pinioti, Sotiria ;
Pretto, Samantha ;
Kroes, Roel ;
Aldeni, Chiara ;
Di Matteo, Mario ;
Prenen, Hans ;
Virginia Tribulatti, Maria ;
Campetella, Oscar ;
Smeets, Ann ;
Noel, Agnes ;
Floris, Giuseppe ;
Van Ginderachter, Jo A. ;
Mazzone, Massimiliano .
CELL METABOLISM, 2019, 30 (05) :917-936
[22]   Human monocytes expressing a CEA-specific chimeric CD64 receptor specifically target CEA-expressing tumour cells in vitro and in vivo [J].
Biglari, A ;
Southgate, TD ;
Fairbairn, LJ ;
Gilham, DE .
GENE THERAPY, 2006, 13 (07) :602-610
[23]   Targeting TREM2 on tumor-associated macrophages enhances immunotherapy [J].
Binnewies, Mikhail ;
Pollack, Joshua L. ;
Rudolph, Joshua ;
Dash, Subhadra ;
Abushawish, Marwan ;
Lee, Tian ;
Jahchan, Nadine S. ;
Canaday, Pamela ;
Lu, Erick ;
Norng, Manith ;
Mankikar, Shilpa ;
Liu, Victoria M. ;
Du, Xiaoyan ;
Chen, Amanda ;
Mehta, Ranna ;
Palmer, Rachael ;
Juric, Vladislava ;
Liang, Linda ;
Baker, Kevin P. ;
Reyno, Leonard ;
Krummel, Matthew F. ;
Streuli, Michel ;
Sriram, Venkataraman .
CELL REPORTS, 2021, 37 (03)
[24]   Macrophage depletion induces edema through release of matrix-degrading proteases and proteoglycan deposition [J].
Bissinger, Stefan ;
Hage, Carina ;
Wagner, Vinona ;
Maser, Ilona-Petra ;
Brand, Verena ;
Schmittnaegel, Martina ;
Jegg, Anna-Maria ;
Cannarile, Michael ;
Watson, Carl ;
Klaman, Irina ;
Rieder, Natascha ;
Loyola, Alejandra Gonzalez ;
Petrova, Tatiana, V ;
Cassier, Philippe A. ;
Gomez-Roca, Carlos ;
Sibaud, Vincent ;
De Palma, Michele ;
Hoves, Sabine ;
Ries, Carola H. .
SCIENCE TRANSLATIONAL MEDICINE, 2021, 13 (598)
[25]   Metabolic Reprogramming of Immune Cells in Cancer Progression [J].
Biswas, Subhra K. .
IMMUNITY, 2015, 43 (03) :435-449
[26]   Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm [J].
Biswas, Subhra K. ;
Mantovani, Alberto .
NATURE IMMUNOLOGY, 2010, 11 (10) :889-896
[27]   Determinants of Resident Tissue Macrophage Identity and Function [J].
Bleriot, Camille ;
Chakarov, Svetoslav ;
Ginhoux, Florent .
IMMUNITY, 2020, 52 (06) :957-970
[28]   Gliomas Promote Immunosuppression through Induction of B7-H1 Expression in Tumor-Associated Macrophages [J].
Bloch, Orin ;
Crane, Courtney A. ;
Kaur, Rajwant ;
Safaee, Michael ;
Rutkowski, Martin J. ;
Parsa, Andrew T. .
CLINICAL CANCER RESEARCH, 2013, 19 (12) :3165-3175
[29]   Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein [J].
Bobadilla, S. ;
Sunseri, N. ;
Landau, N. R. .
GENE THERAPY, 2013, 20 (05) :514-520
[30]   Antagonistic Inflammatory Phenotypes Dictate Tumor Fate and Response to Immune Checkpoint Blockade [J].
Bonavita, Eduardo ;
Bromley, Christian P. ;
Jonsson, Gustav ;
Pelly, Victoria S. ;
Sahoo, Sudhakar ;
Walwyn-Brown, Katherine ;
Mensurado, Sofia ;
Moeini, Agrin ;
Flanagan, Eimear ;
Bell, Charlotte R. ;
Chiang, Shih-Chieh ;
Chikkanna-Gowda, C. P. ;
Rogers, Neil ;
Silva-Santos, Bruno ;
Jaillon, Sebastien ;
Mantovani, Alberto ;
Sousa, Caetano Reis E. ;
Guerra, Nadia ;
Davis, Daniel M. ;
Zelenay, Santiago .
IMMUNITY, 2020, 53 (06) :1215-+