Superpixel Contracted Neighborhood Contrastive Subspace Clustering Network for Hyperspectral Images

被引:33
作者
Cai, Yaoming [1 ,2 ]
Zhang, Zijia [1 ,2 ]
Ghamisi, Pedram [2 ,3 ]
Ding, Yao [4 ]
Liu, Xiaobo [5 ,6 ]
Cai, Zhihua [1 ]
Gloaguen, Richard [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Helmholtz Inst Freiberg Resource Technol, Helmholtz Zentrum Dresden Rossendorf HZDR, D-09599 Freiberg, Germany
[3] Inst Adv Res Artificial Intelligence IARAI, A-1030 Vienna, Austria
[4] Xian Res Inst High Technol, Xian 710000, Peoples R China
[5] China Univ Geosci, Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Peoples R China
[6] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Training; Hyperspectral imaging; Data models; Decoding; Adaptation models; Multitasking; Geology; Contrastive learning; hyperspectral image processing; subspace clustering; superpixel; CLASSIFICATION; ALGORITHM; ROBUST;
D O I
10.1109/TGRS.2022.3179637
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep subspace clustering (DSC) has achieved remarkable performances in the unsupervised classification of hyperspectral images. However, previous models based on pixel-level self-expressiveness of data suffer from the exponential growth of computational complexity and access memory requirements with an increasing number of samples, thus leading to poor applicability to large hyperspectral images. This article presents a neighborhood contrastive subspace clustering (NCSC) network, a scalable and robust DSC approach, for unsupervised classification of large hyperspectral images. Instead of using a conventional autoencoder, we devise a novel superpixel pooling autoencoder to learn the superpixel-level latent representation and subspace, allowing a contracted self-expressive layer. To encourage a robust subspace representation, we propose a novel neighborhood contrastive regularization to maximize the agreement between positive samples in subspace. We jointly train the resulting model in an end-to-end fashion by optimizing an adaptively weighted multitask loss. Extensive experiments on three hyperspectral benchmarks demonstrate the effectiveness of the proposed approach and its substantial advancement of state-of-the-art approaches.
引用
收藏
页数:13
相关论文
共 49 条
  • [41] Fuzzy Objective Functions for Robust Pattern Recognition
    Yang, Tai-Ning
    Lee, Chih-Jen
    Yen, Shi-Jim
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 2057 - +
  • [42] Laplacian Regularized Low-Rank Representation and Its Applications
    Yin, Ming
    Gao, Junbin
    Lin, Zhouchen
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (03) : 504 - 517
  • [43] You C., 2018, P EUROPEAN C COMPUTE, P67
  • [44] Sparsity-Based Clustering for Large Hyperspectral Remote Sensing Images
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10410 - 10424
  • [45] Hyperspectral Image Clustering: Current Achievements and Future Lines
    Zhai, Han
    Zhang, Hongyan
    Li, Pingxiang
    Zhang, Liangpei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (04) : 35 - 67
  • [46] Spectral-Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images
    Zhang, Hongyan
    Zhai, Han
    Zhang, Liangpei
    Li, Pingxiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3672 - 3684
  • [47] Hyperspectral image unsupervised classification by robust manifold matrix factorization
    Zhang, Lefei
    Zhang, Liangpei
    Du, Bo
    You, Jane
    Tao, Dacheng
    [J]. INFORMATION SCIENCES, 2019, 485 : 154 - 169
  • [48] Evolution-Driven Randomized Graph Convolutional Networks
    Zhang, Zijia
    Cai, Yaoming
    Gong, Wenyin
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (12): : 7516 - 7526
  • [49] Hypergraph Convolutional Subspace Clustering With Multihop Aggregation for Hyperspectral Image
    Zhang, Zijia
    Cai, Yaoming
    Gong, Wenyin
    Ghamisi, Pedram
    Liu, Xiaobo
    Gloaguen, Richard
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 676 - 686