Superpixel Contracted Neighborhood Contrastive Subspace Clustering Network for Hyperspectral Images

被引:33
作者
Cai, Yaoming [1 ,2 ]
Zhang, Zijia [1 ,2 ]
Ghamisi, Pedram [2 ,3 ]
Ding, Yao [4 ]
Liu, Xiaobo [5 ,6 ]
Cai, Zhihua [1 ]
Gloaguen, Richard [2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Helmholtz Inst Freiberg Resource Technol, Helmholtz Zentrum Dresden Rossendorf HZDR, D-09599 Freiberg, Germany
[3] Inst Adv Res Artificial Intelligence IARAI, A-1030 Vienna, Austria
[4] Xian Res Inst High Technol, Xian 710000, Peoples R China
[5] China Univ Geosci, Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Peoples R China
[6] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Training; Hyperspectral imaging; Data models; Decoding; Adaptation models; Multitasking; Geology; Contrastive learning; hyperspectral image processing; subspace clustering; superpixel; CLASSIFICATION; ALGORITHM; ROBUST;
D O I
10.1109/TGRS.2022.3179637
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep subspace clustering (DSC) has achieved remarkable performances in the unsupervised classification of hyperspectral images. However, previous models based on pixel-level self-expressiveness of data suffer from the exponential growth of computational complexity and access memory requirements with an increasing number of samples, thus leading to poor applicability to large hyperspectral images. This article presents a neighborhood contrastive subspace clustering (NCSC) network, a scalable and robust DSC approach, for unsupervised classification of large hyperspectral images. Instead of using a conventional autoencoder, we devise a novel superpixel pooling autoencoder to learn the superpixel-level latent representation and subspace, allowing a contracted self-expressive layer. To encourage a robust subspace representation, we propose a novel neighborhood contrastive regularization to maximize the agreement between positive samples in subspace. We jointly train the resulting model in an end-to-end fashion by optimizing an adaptively weighted multitask loss. Extensive experiments on three hyperspectral benchmarks demonstrate the effectiveness of the proposed approach and its substantial advancement of state-of-the-art approaches.
引用
收藏
页数:13
相关论文
共 49 条
  • [1] Spectral Variability in Hyperspectral Data Unmixing
    Borsoi, Ricardo
    Imbiriba, Tales
    Bermudez, Jose Carlos
    Richard, Cedric
    Chanussot, Jocelyn
    Drumetz, Lucas
    Tourneret, Jean-Yves
    Zare, Alina
    Jutten, Christian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (04) : 223 - 270
  • [2] Large Scale Spectral Clustering Via Landmark-Based Sparse Representation
    Cai, Deng
    Chen, Xinlei
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (08) : 1669 - 1680
  • [3] Cai Y., 2021, ARXIV211107945
  • [4] Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering
    Cai, Yaoming
    Zeng, Meng
    Cai, Zhihua
    Liu, Xiaobo
    Zhang, Zijia
    [J]. INFORMATION SCIENCES, 2021, 578 : 85 - 101
  • [5] Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image
    Cai, Yaoming
    Zhang, Zijia
    Cai, Zhihua
    Liu, Xiaobo
    Jiang, Xinwei
    Yan, Qin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4191 - 4202
  • [6] Chen T, 2020, PR MACH LEARN RES, V119
  • [7] Semi-Supervised Locality Preserving Dense Graph Neural Network With ARMA Filters and Context-Aware Learning for Hyperspectral Image Classification
    Ding, Yao
    Zhao, Xiaofeng
    Zhang, Zhili
    Cai, Wei
    Yang, Nengjun
    Zhan, Ying
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Fusion of Dual Spatial Information for Hyperspectral Image Classification
    Duan, Puhong
    Ghamisi, Pedram
    Kang, Xudong
    RastiO, Behnood
    Li, Shutao
    Gloaguen, Richard
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7726 - 7738
  • [9] Sparse Subspace Clustering: Algorithm, Theory, and Applications
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2765 - 2781
  • [10] The Potential of Machine Learning for a More Responsible Sourcing of Critical Raw Materials
    Ghamisi, Pedram
    Shahi, Kasra Rafiezadeh
    Duan, Puhong
    Rasti, Behnood
    Lorenz, Sandra
    Booysen, Rene
    Thiele, Sam
    Contreras, Isabel Cecilia
    Kirsch, Moritz
    Gloaguen, Richard
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8971 - 8988