Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools

被引:87
作者
Guevara, Edgar [1 ,2 ,3 ]
Carlos Torres-Galvan, Juan [2 ,3 ]
Ramirez-Elias, Miguel G. [4 ]
Luevano-Contreras, Claudia [5 ]
Javier Gonzalez, Francisco [2 ,3 ]
机构
[1] CONACYT Univ Autonoma San Luis Potosi, San Luis Potosi, Slp, Mexico
[2] Univ Autonoma San Luis Potosi, Terahertz Sci & Technol Ctr C2T2, San Luis Potosi, Slp, Mexico
[3] Univ Autonoma San Luis Potosi, Sci & Technol Natl Lab LANCyTT, San Luis Potosi, Slp, Mexico
[4] Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi, Slp, Mexico
[5] Univ Guanajuato, Dept Med Sci, Leon, Mexico
关键词
ADVANCED GLYCATION; GLUCOSE; PREDICTION; DIAGNOSIS;
D O I
10.1364/BOE.9.004998
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Type 2 diabetes mellitus (DM2) is one of the most widely prevalent diseases worldwide and is currently screened by invasive techniques based on enzymatic assays that measure plasma glucose concentration in a laboratory setting. A promising plan of action for screening DM2 is to identify molecular signatures in a non-invasive fashion. This work describes the application of portable Raman spectroscopy coupled with several supervised machine-learning techniques, to discern between diabetic patients and healthy controls (Ctrl), with a high degree of accuracy. Using artificial neural networks (ANN), we accurately discriminated between DM2 and Ctrl groups with 88.9-90.9% accuracy, depending on the sampling site. In order to compare the ANN performance to more traditional methods used in spectroscopy, principal component analysis (PCA) was carried out. A subset of features from PCA was used to generate a support vector machine (SVM) model, albeit with decreased accuracy (76.0-82.5%). The 10-fold cross-validation model was performed to validate both classifiers. This technique is relatively low-cost, harmless, simple and comfortable for the patient, yielding rapid diagnosis. Furthermore, the performance of the ANN-based method was better than the typical performance of the invasive measurement of capillary blood glucose. These characteristics make our method a promising screening tool for identifying DM2 in a non-invasive and automated fashion. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:4998 / 5010
页数:13
相关论文
共 54 条
[11]   Study on the echinococcosis blood serum detection based on Raman spectroscopy combined with neural network [J].
Cheng J.-Y. ;
Xu L. ;
Lü G.-D. ;
Tang J. ;
Mo J.-Q. ;
Lü X.-Y. ;
Gao Z.-X. .
Optoelectronics Letters, 2017, 13 (01) :77-80
[12]   Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy [J].
Combrisson, Etienne ;
Jerbi, Karim .
JOURNAL OF NEUROSCIENCE METHODS, 2015, 250 :126-136
[13]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[14]   Prevalence of Diagnosed and Undiagnosed Type 2 Diabetes Mellitus Among US Adolescents: Results From the Continuous NHANES, 1999-2010 [J].
Demmer, Ryan T. ;
Zuk, Aleksandra M. ;
Rosenbaum, Michael ;
Desvarieux, Moise .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 178 (07) :1106-1113
[15]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[16]   Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation [J].
Dingari, Narahara Chari ;
Horowitz, Gary L. ;
Kang, Jeon Woong ;
Dasari, Ramachandra R. ;
Barman, Ishan .
PLOS ONE, 2012, 7 (02)
[17]   Applications of Raman spectroscopy in skin research - From skin physiology and diagnosis up to risk assessment and dermal drug delivery [J].
Franzen, Lutz ;
Windbergs, Maike .
ADVANCED DRUG DELIVERY REVIEWS, 2015, 89 :91-104
[18]   On the parameter optimization of Support Vector Machines for binary classification [J].
Gaspar, Paulo ;
Carbonell, Jaime ;
Luis Oliveira, Jose .
JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2012, 9 (03)
[19]   Melanoma diagnosis by Raman spectroscopy and neural networks: Structure alterations in proteins and lipids in intact cancer tissue [J].
Gniadecka, M ;
Philipsen, PA ;
Sigurdsson, S ;
Wessel, S ;
Nielsen, OF ;
Christensen, DH ;
Hercogova, J ;
Rossen, K ;
Thomsen, HK ;
Gniadecki, R ;
Hansen, LK ;
Wulf, HC .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2004, 122 (02) :443-449
[20]   Use of Raman spectroscopy for the early detection of filaggrin-related atopic dermatitis [J].
Gonzalez, F. J. ;
Alda, J. ;
Moreno-Cruz, B. ;
Martinez-Escaname, M. ;
Ramirez-Elias, M. G. ;
Torres-Alvarez, B. ;
Moncada, B. .
SKIN RESEARCH AND TECHNOLOGY, 2011, 17 (01) :45-50