Effective averaging of stochastic radiative models based on Monte Carlo simulation

被引:7
作者
Ambos, A. Yu. [1 ]
Mikhailov, G. A. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, Inst Computat Math & Math Geophys, Pr Akad Lavrenteva 6, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Poisson ensemble; random field; correlation length; radiation transfer; transmission function; penetration probability; maximum cross section method; double randomization;
D O I
10.1134/S0965542516050055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the Monte Carlo simulation and probabilistic analysis, stochastic radiative models are effectively averaged; that is, deterministic models that reproduce the mean probabilities of particle passage through a stochastic medium are constructed. For this purpose, special algorithms for the double randomization and conjugate walk methods are developed. For the numerical simulation of stochastic media, homogeneous isotropic Voronoi and Poisson mosaic models are used. The parameters of the averaged models are estimated based on the properties of the exponential distribution and the renewal theory.
引用
收藏
页码:881 / 893
页数:13
相关论文
共 12 条
[1]   Statistical simulation of an exponentially correlated many-dimensional random field [J].
Ambos, A. Yu. ;
Mikhailov, G. A. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2011, 26 (03) :263-273
[2]  
[Anonymous], 1989, Monte Carlo Methods in Atmosperic Optics
[4]  
Feigelson E. M., 1978, SOLAR RAD FLUXES CLO
[5]  
Feller William, 1967, Technical report., V3
[6]   RANDOM SUBDIVISIONS OF SPACE INTO CRYSTALS [J].
GILBERT, EN .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :958-&
[7]  
Ibragimov I.A., 1965, Independent and Stationary Sequences of Random Variables
[8]   Asymptotic estimates of the mean probability of radiative transfer through an exponentially correlated stochastic medium [J].
Mikhailov, G. A. .
IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2012, 48 (06) :618-624
[9]  
Mikhailov G. A., 1992, OPTIMIZATION WEIGHTE
[10]  
Prigarin S. M., 2005, NUMERICAL SIMULATION