A Complex-Valued Encoding Multichain Seeker Optimization Algorithm for Engineering Problems

被引:3
作者
Duan, Shaomi [1 ,2 ]
Luo, Huilong [1 ]
Liu, Haipeng [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Civil Engn & Mech, Kunming 650500, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
SEARCH ALGORITHM; DIFFERENTIAL EVOLUTION; DESIGN;
D O I
10.1155/2022/8249030
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
is article comes up with a complex-valued encoding multichain seeker optimization algorithm (CMSOA) for the engineering optimization problems. The complex-valued encoding strategy and the multichain strategy are leaded in the seeker optimization algorithm (SOA). These strategies enhance the individuals' diversity, enhance the local search, avert falling into the local optimum, and are the influential global optimization strategies. This article chooses fifteen benchmark functions, four proportional integral derivative (PID) control parameter models, and six constrained engineering problems to test. According to the experimental results, the CMSOA can be used in the benchmark functions, in the PID control parameter optimization, and in the optimization of constrained engineering problems. Compared to the particle swarm optimization (PSO), simulated annealing based on genetic algorithm (SA_GA), gravitational search algorithm (GSA), sine cosine algorithm (SCA), multiverse optimizer (MVO), and seeker optimization algorithm (SOA), the optimization ability and robustness of the CMSOA are better than those of others algorithms.
引用
收藏
页数:35
相关论文
共 67 条
  • [1] Aarts E. H. L., 1989, Stat. Neerl, V43, P31, DOI [DOI 10.1111/J.1467-9574.1989.TB01245.X, 10.1111/j.1467-9574.1989.tb01245.x]
  • [2] Abdel-Baset Mohamed, 2017, International Journal of Mathematical Modelling and Numerical Optimisation, V8, P108
  • [3] RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method
    Ahmadianfar, Iman
    Heidari, Ali Asghar
    Gandomi, Amir H.
    Chu, Xuefeng
    Chen, Huiling
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 181
  • [4] A Systematic Literature Review of Adaptive Parameter Control Methods for Evolutionary Algorithms
    Aleti, Aldeida
    Moser, Irene
    [J]. ACM COMPUTING SURVEYS, 2016, 49 (03)
  • [5] Bui T., SCI PROGRAMMING-NETH, V2020
  • [6] Chen De-bao, 2009, Computer Engineering and Applications, V45, P59, DOI 10.3778/j.issn.1002-8331.2009.10.018
  • [7] Symbiotic Organisms Search: A new metaheuristic optimization algorithm
    Cheng, Min-Yuan
    Prayogo, Doddy
    [J]. COMPUTERS & STRUCTURES, 2014, 139 : 98 - 112
  • [8] Chickermane H, 1996, INT J NUMER METH ENG, V39, P829, DOI 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO
  • [9] 2-U
  • [10] Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
    Coelho, Leandro dos Santos
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (02) : 1676 - 1683