All-Solid-State Li-Ion Battery Using Li1.5Al0.5Ge1.5(PO4)3 As Electrolyte Without Polymer Interfacial Adhesion

被引:55
|
作者
Meesala, Yedukondalu [1 ]
Chen, Chen-Yu [2 ,3 ]
Jena, Anirudha [1 ,2 ,3 ]
Liao, Yu-Kai [4 ]
Hu, Shu-Fen [4 ]
Chang, Ho [2 ,3 ]
Liu, Ru-Shi [1 ,2 ,3 ]
机构
[1] Natl Taiwan Univ, Dept Chem, Taipei 106, Taiwan
[2] Natl Taipei Univ Technol, Dept Mech Engn, Taipei 106, Taiwan
[3] Natl Taipei Univ Technol, Grad Inst Mfg Technol, Taipei 106, Taiwan
[4] Natl Taiwan Normal Univ, Dept Phys, Taipei 116, Taiwan
关键词
RECHARGEABLE BATTERIES; GLASS-CERAMICS; LITHIUM; CONDUCTIVITY; CONDUCTORS; CHALLENGES; STABILITY;
D O I
10.1021/acs.jpcc.8b03971
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium-ion batteries are promising candidates for energy storage devices that meet the requirements to reduce CO2 emissions. NASICON-type solid-state electrolytes (SSE) are most promising materials as electrolytes for high-performance lithium ion batteries because of their good stability and high ionic conductivity. In this study, we successfully fabricate NASICON-based Li1.5Al0.5Ge1.5(PO4)(3) lithium fast-ion conductors through melt quenching with post-crystallization. The effect of crystallization temperature on the structure of LAGP and their ionic conductivity is systematically studied using Rietveld analysis of Synchrotron X-ray powder diffraction patterns, multinuclear magnetic resonance, and electrochemical analysis, revealing that the mobility of Li ion is dependent on crystallization temperature. The glass-ceramic LAGP annealed at 800 degrees C for 8 h exhibits the highest conductivity of 0.5 mS cm(-1) at room temperature. Moreover, we report the viability of the prepared LAGP glass-ceramic as a solid electrolyte in Li-ion batteries without polymer adhesion. The cycling of Li/LAGP/LFP all-solid-state cell, provides a stable cycling lifetime of up to 50 cycles. This approach demonstrates that LAGP glass-ceramic can have good contact with the electrodes without interfacial layer and can deliver a reasonable discharge capacity after 50 cycles.
引用
收藏
页码:14383 / 14389
页数:7
相关论文
共 50 条
  • [21] Improved ion conductivity and interface characteristics of the Te-doped solid NASICON electrolyte Li1.5Al0.5Ge1.5(PO4)3 with graphite coating
    Liu, Lei
    Cui, Xuan
    Jie, Zhihui
    Lin, Yihan
    Zhang, Chen
    Song, Jinhong
    Wang, Linxia
    Ma, Jianli
    Ma, Lei
    JOURNAL OF POWER SOURCES, 2023, 575
  • [22] Electrochemical characterization of in situ polymerized composite solid electrolyte incorporating three dimensional Li1.5Al0.5Ge1.5(PO4)3 framework
    Kim, Jong -Min
    Sangabathula, Omkar
    Nguyen, An-Giang
    Park, Chan-Jin
    JOURNAL OF POWER SOURCES, 2024, 613
  • [23] Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics
    Mariappan, Chinnasamy R.
    Yada, Chihiro
    Rosciano, Fabio
    Roling, Bernhard
    JOURNAL OF POWER SOURCES, 2011, 196 (15) : 6456 - 6464
  • [24] Elaboration of controlled size Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass-ceramics
    Kubanska, A.
    Castro, L.
    Tortet, L.
    Schaef, O.
    Dolle, M.
    Bouchet, R.
    SOLID STATE IONICS, 2014, 266 : 44 - 50
  • [25] Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification
    Li, Lianchuan
    Zhang, Ziqi
    Luo, Linshan
    You, Run
    Jiao, Jinlong
    Huang, Wei
    Wang, Jianyuan
    Li, Cheng
    Han, Xiang
    Chen, Songyan
    IONICS, 2020, 26 (08) : 3815 - 3821
  • [26] Toward an All-Ceramic Cathode-Electrolyte Interface with Low-Temperature Pressed NASICON Li1.5Al0.5Ge1.5(PO4)3 Electrolyte
    Paolella, Andrea
    Zhu, Wen
    Bertoni, Giovanni
    Perea, Alexis
    Demers, Hendrix
    Savoie, Sylvio
    Girard, Gabriel
    Delaporte, Nicolas
    Guerfi, Abdelbast
    Rumpel, Mathias
    Lorrmann, Henning
    Demopoulos, George P.
    Zaghib, Karim
    ADVANCED MATERIALS INTERFACES, 2020, 7 (12)
  • [27] A new high-Li+-conductivity Mg-doped Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte with enhanced electrochemical performance for solid-state lithium metal batteries
    Nikodimos, Yosef
    Abrha, Ljalem Hadush
    Weldeyohannes, Haile Hisho
    Shitaw, Kassie Nigus
    Temesgen, Nigusu Tiruneh
    Olbasa, Bizualem Wakuma
    Huang, Chen-Jui
    Jiang, Shi-Kai
    Wang, Chia-Hsin
    Sheu, Hwo-Shuenn
    Wu, She-Huang
    Su, Wei-Nien
    Yang, Chun-Chen
    Hwang, Bing Joe
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (48) : 26055 - 26065
  • [28] Boron group element doping of Li1.5Al0.5Ge1.5(PO4)3based on microwave sintering
    Yan, Binggong
    Kang, Lei
    Kotobuki, Masashi
    He, Linchun
    Liu, Bin
    Jiang, Kaiyong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2021, 25 (02) : 527 - 534
  • [29] Sol-Gel-Derived Lithium Superionic Conductor Li1.5Al0.5Ge1.5(PO4)3 Electrolyte for Solid-State Lithium-Oxygen Batteries
    Kichambare, Padmakar D.
    Howell, Thomas
    Rodrigues, Stanley
    ENERGY TECHNOLOGY, 2014, 2 (04) : 391 - 396
  • [30] Construction of SnO2 buffer layer and analysis of its interface modification for Li and Li1.5Al0.5Ge1.5(PO4)3 in solid-state batteries
    Song, Jinhong
    Zhang, Chen
    Zheng, Zejian
    Huo, Shizhe
    Lin, Yihan
    Yang, Fei
    Liu, Lei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 663 : 132 - 142