Classification, inference and segmentation of anomalous diffusion with recurrent neural networks

被引:43
作者
Argun, Aykut [1 ]
Volpe, Giovanni [1 ]
Bo, Stefano [2 ]
机构
[1] Univ Gothenburg, Dept Phys, Origovagen 6B, SE-41296 Gothenburg, Sweden
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, DE-01187 Dresden, Germany
基金
欧洲研究理事会;
关键词
anomalous diffusion; machine learning; recurrent neural networks; inference and classification; change point detection;
D O I
10.1088/1751-8121/ac070a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Countless systems in biology, physics, and finance undergo diffusive dynamics. Many of these systems, including biomolecules inside cells, active matter systems and foraging animals, exhibit anomalous dynamics where the growth of the mean squared displacement with time follows a power law with an exponent that deviates from 1. When studying time series recording the evolution of these systems, it is crucial to precisely measure the anomalous exponent and confidently identify the mechanisms responsible for anomalous diffusion. These tasks can be overwhelmingly difficult when only few short trajectories are available, a situation that is common in the study of non-equilibrium and living systems. Here, we present a data-driven method to analyze single anomalous diffusion trajectories employing recurrent neural networks, which we name RANDI. We show that our method can successfully infer the anomalous exponent, identify the type of anomalous diffusion process, and segment the trajectories of systems switching between different behaviors. We benchmark our performance against the state-of-the art techniques for the study of single short trajectories that participated in the Anomalous Diffusion (AnDi) challenge. Our method proved to be the most versatile method, being the only one to consistently rank in the top 3 for all tasks proposed in the AnDi challenge.
引用
收藏
页数:19
相关论文
共 64 条
[31]   Analysis of short subdiffusive time series: scatter of the time-averaged mean-squared displacement [J].
Jeon, Jae-Hyung ;
Metzler, Ralf .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (25)
[32]   Guidelines for the Fitting of Anomalous Diffusion Mean Square Displacement Graphs from Single Particle Tracking Experiments [J].
Kepten, Eldad ;
Weron, Aleksander ;
Sikora, Grzegorz ;
Burnecki, Krzysztof ;
Garini, Yuval .
PLOS ONE, 2015, 10 (02)
[33]   Improved estimation of anomalous diffusion exponents in single-particle tracking experiments [J].
Kepten, Eldad ;
Bronshtein, Irena ;
Garini, Yuval .
PHYSICAL REVIEW E, 2013, 87 (05)
[34]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[35]   LEVY STATISTICS IN A HAMILTONIAN SYSTEM [J].
KLAFTER, J ;
ZUMOFEN, G .
PHYSICAL REVIEW E, 1994, 49 (06) :4873-4877
[36]  
Klafter J, 2005, PHYS WORLD, V18, P29
[37]   Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach [J].
Kowalek, Patrycja ;
Loch-Olszewska, Hanna ;
Szwabinski, Janusz .
PHYSICAL REVIEW E, 2019, 100 (03)
[38]   Spectral Content of a Single Non-Brownian Trajectory [J].
Krapf, Diego ;
Lukat, Nils ;
Marinari, Enzo ;
Metzler, Ralf ;
Oshanin, Gleb ;
Selhuber-Unkel, Christine ;
Squarcini, Alessio ;
Stadler, Lorenz ;
Weiss, Matthias ;
Xu, Xinran .
PHYSICAL REVIEW X, 2019, 9 (01)
[39]   Optimal parameters for anomalous-diffusion-exponent estimation from noisy data [J].
Lanoiselee, Yann ;
Sikora, Grzegorz ;
Grzesiek, Aleksandra ;
Grebenkov, Denis S. ;
Wylomanska, Agnieszka .
PHYSICAL REVIEW E, 2018, 98 (06)
[40]   Self-similar Gaussian processes for modeling anomalous diffusion [J].
Lim, SC ;
Muniandy, SV .
PHYSICAL REVIEW E, 2002, 66 (02)