Blood-Brain Barrier Permeable Gold Nanoparticles: An Efficient Delivery Platform for Enhanced Malignant Glioma Therapy and Imaging

被引:189
作者
Cheng, Yu [1 ]
Dai, Qing [2 ,3 ]
Morshed, Ramin A. [1 ]
Fan, Xiaobing [4 ]
Wegscheid, Michelle L. [1 ]
Wainwright, Derek A. [1 ]
Han, Yu [1 ]
Zhang, Lingjiao [1 ]
Auffinger, Brenda [1 ]
Tobias, Alex L. [1 ]
Rincon, Esther [1 ]
Thaci, Bart [1 ]
Ahmed, Atique U. [1 ]
Warnke, Peter C. [1 ]
He, Chuan [2 ,3 ]
Lesniak, Maciej S. [1 ]
机构
[1] Univ Chicago, Brain Tumor Ctr, Chicago, IL 60637 USA
[2] Univ Chicago, Inst Biophys Dynam, Dept Chem, Chicago, IL 60637 USA
[3] Univ Chicago, Howard Hughes Med Inst, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
关键词
ADJUVANT TEMOZOLOMIDE; LOCAL-DELIVERY; DRUG-DELIVERY; PARTICLE-SIZE; QUANTUM DOTS; TAT; TUMORS; DOXORUBICIN; CELLS; GLIOBLASTOMA;
D O I
10.1002/smll.201400654
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The blood-brain barrier (BBB) remains a formidable obstacle in medicine, preventing efficient penetration of chemotherapeutic and diagnostic agents to malignant gliomas. Here, a transactivator of transcription (TAT) peptide-modified gold nanoparticle platform (TAT-Au NP) with a 5 nm core size is demonstrated to be capable of crossing the BBB efficiently and delivering cargoes such as the anticancer drug doxorubicin (Dox) and Gd3+ contrast agents to brain tumor tissues. Treatment of mice bearing intracranial glioma xenografts with pH-sensitive Dox-conjugated TAT-Au NPs via a single intravenous administration leads to significant survival benefit when compared to the free Dox. Furthermore, it is demonstrated that TAT-Au NPs are capable of delivering Gd3+ chelates for enhanced brain tumor imaging with a prolonged retention time of Gd3+ when compared to the free Gd3+ chelates. Collectively, these results show promising applications of the TAT-Au NPs for enhanced malignant brain tumor therapy and non-invasive imaging.
引用
收藏
页码:5137 / 5150
页数:14
相关论文
共 48 条
[1]   Synthesis and visualization of a membrane-permeable MRI contrast agent [J].
Allen, MJ ;
Meade, TJ .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2003, 8 (07) :746-750
[2]  
Arola OJ, 2000, CANCER RES, V60, P1789
[3]   Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers [J].
Aryal, Santosh ;
Grailer, Jamison J. ;
Pilla, Srikanth ;
Steeber, Douglas A. ;
Gong, Shaoqin .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (42) :7879-7884
[4]   Active targeting of brain tumors using nanocarriers [J].
Beduneau, Arnaud ;
Saulnier, Patrick ;
Benoit, Jean-Pierre .
BIOMATERIALS, 2007, 28 (33) :4947-4967
[5]   Addressing Brain Tumors with Targeted Gold Nanoparticles: A New Gold Standard for Hydrophobic Drug Delivery? [J].
Cheng, Yu ;
Meyers, Joseph D. ;
Agnes, Richard S. ;
Doane, Tennyson L. ;
Kenney, Malcolm E. ;
Broome, Ann-Marie ;
Burda, Clemens ;
Basilion, James P. .
SMALL, 2011, 7 (16) :2301-2306
[6]   Particle size-dependent organ distribution of gold nanoparticles after intravenous administration [J].
De Jong, Wim H. ;
Hagens, Werner I. ;
Krystek, Petra ;
Burger, Marina C. ;
Sips, Adrienne J. A. M. ;
Geertsma, Robert E. .
BIOMATERIALS, 2008, 29 (12) :1912-1919
[7]   Electrophoretic Mobilities of PEGylated Gold NPs [J].
Doane, Tennyson L. ;
Cheng, Yu ;
Babar, Annir ;
Hill, Reghan J. ;
Burda, Clemens .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (44) :15624-15631
[8]   Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature [J].
Etame, Arnold B. ;
Smith, Christian A. ;
Chan, Warren C. W. ;
Rutka, James T. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2011, 7 (06) :992-1000
[9]   Lysosornes as targets for cancer therapy [J].
Fehrenbacher, N ;
Jäättelä, M .
CANCER RESEARCH, 2005, 65 (08) :2993-2995
[10]  
Friedman HS, 2000, CLIN CANCER RES, V6, P2585