Salinity Stress Affects Photosynthesis, Malondialdehyde Formation, and Proline Content in Portulaca oleracea L.

被引:149
|
作者
Hnilickova, Helena [1 ]
Kraus, Kamil [1 ]
Vachova, Pavla [1 ]
Hnilicka, Frantisek [1 ]
机构
[1] Czech Univ Life Sci Prague, Fac Agrobiol Food & Nat Resources, Dept Bot & Plant Physiol, Prague 16500, Czech Republic
来源
PLANTS-BASEL | 2021年 / 10卷 / 05期
关键词
purslane; salinity; gas exchange; proline; salt stress; CRASSULACEAN ACID METABOLISM; SALT-STRESS; CHLOROPHYLL FLUORESCENCE; WATER STATUS; PHYSIOLOGICAL-RESPONSES; LIPID-PEROXIDATION; SEEDLING GROWTH; GLYCINE BETAINE; TOLERANCE; PLANT;
D O I
10.3390/plants10050845
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In this investigation, the effect of salt stress on Portulaca oleracea L. was monitored at salinity levels of 100 and 300 mM NaCl. At a concentration of 100 mM NaCl there was a decrease in stomatal conductance (gs) simultaneously with an increase in CO2 assimilation (A) at the beginning of salt exposure (day 3). However, the leaf water potential (psi(w)), the substomatal concentration of CO2 (Ci), the maximum quantum yield of photosystem II (Fv/Fm), and the proline and malondialdehyde (MDA) content remained unchanged. Exposure to 300 mM NaCl caused a decrease in gs from day 3 and a decrease in water potential, CO2 assimilation, and Fv/Fm from day 9. There was a large increase in proline content and a significantly higher MDA concentration on days 6 and 9 of salt stress compared to the control group. After 22 days of exposure to 300 mM NaCl, there was a transition from the C4 cycle to crassulacean acid metabolism (CAM), manifested by a rapid increase in substomatal CO2 concentration and negative CO2 assimilation values. These results document the tolerance of P. oleracea to a lower level of salt stress and the possibility of its use in saline localities.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Sulfated modification and cytotoxicity of Portulaca oleracea L. polysaccharides
    Tong Chen
    Jin Wang
    Yuanyuan Li
    Jianmin Shen
    Ting Zhao
    Haixia Zhang
    Glycoconjugate Journal, 2010, 27 : 635 - 642
  • [22] A New Tricyclic Alkaloid from Portulaca oleracea L.
    Yue, Su
    Jiao, Ze-Zhao
    Sun, Hong-Xiang
    Jin, Tian-Yun
    Xiang, Lan
    HELVETICA CHIMICA ACTA, 2015, 98 (07) : 961 - 966
  • [23] Two Antioxidant Alkaloids from Portulaca oleracea L.
    Liu, Dianyu
    Shen, Tao
    Xiang, Lan
    HELVETICA CHIMICA ACTA, 2011, 94 (03) : 497 - 501
  • [24] Isolation and characterization of dihydrohomoisoflavonoids from Portulaca oleracea L.
    Liu, Jianbo
    Wang, Hongqing
    Shao, Hongjie
    Sun, Junhua
    Dong, Chaoxuan
    Chen, Ruoyun
    Kang, Jie
    PHYTOCHEMISTRY, 2024, 222
  • [25] Metabolism of Oleraindole A from Portulaca Oleracea L. in Rats
    Yao, Junjie
    Lan, Xiujuan
    Gu, Liyan
    Ying, Xixiang
    LATIN AMERICAN JOURNAL OF PHARMACY, 2024, 43 (02): : 351 - 355
  • [26] The therapeutic effects of Portulaca oleracea L. in hepatogastric disorders
    Farkhondeh, Tahereh
    Samarghandian, Saeed
    GASTROENTEROLOGIA Y HEPATOLOGIA, 2019, 42 (02): : 127 - 132
  • [27] Two Novel Triterpenoids from Portulaca oleracea L.
    Xin, Hai-Liang
    Xu, Yan-Feng
    Hou, Yin-Huan
    Zhang, Ya-Ni
    Yue, Xiao-Qiang
    Lu, Jin-Cai
    Ling, Chang-Quan
    HELVETICA CHIMICA ACTA, 2008, 91 (11) : 2075 - 2080
  • [28] Portulaca oleracea L.: literature quantitative research analysis
    Mattera, Maria
    Pilla, Niccolo
    Aguzzi, Altero
    Gabrielli, Paolo
    Di Lena, Gabriella
    Durazzo, Alessandra
    Lucarini, Massimo
    NATURAL PRODUCT RESEARCH, 2024,
  • [29] PURSLANE (Portulaca oleracea L.) RESPONSE TO NPK FERTILIZATION
    Montoya-Garcia, Cesar.
    Volke-Haller, Victor
    Trinidad-Santos, Antonio
    Villanueva-Verduzco, Clemente
    Sanchez-Escudero, Julio
    REVISTA FITOTECNIA MEXICANA, 2017, 40 (03) : 325 - 332
  • [30] New flavonoids from Portulaca oleracea L. and their activities
    Yang, Xu
    Zhang, Wenjie
    Ying, Xixiang
    Stien, Didier
    FITOTERAPIA, 2018, 127 : 257 - 262