An inverse problem for Moore-Gibson-Thompson equation arising in high intensity ultrasound

被引:9
作者
Arancibia, Rogelio [2 ]
Lecaros, Rodrigo [2 ]
Mercado, Alberto [2 ]
Zamorano, Sebastian [1 ]
机构
[1] Univ Santiago Chile USACH, Fac Ciencia, Dept Matemat & Ciencia Comp, Casilla 307,Correo 2, Santiago, Chile
[2] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla 110-V, Valparaiso, Chile
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2022年 / 30卷 / 05期
关键词
Carleman inequalities; Bukhgeim-Klibanov method; hidden regularity; Moore-Gibson-Thompson equation; OBSERVABILITY; COEFFICIENT; UNIQUENESS; WAVES;
D O I
10.1515/jiip-2020-0090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the inverse problem of recovering a space-dependent coefficient of the Moore-Gibson-Thompson (MGT) equation from knowledge of the trace of the solution on some open subset of the boundary. We obtain the Lipschitz stability for this inverse problem, and we design a convergent algorithm for the reconstruction of the unknown coefficient. The techniques used are based on Carleman inequalities for wave equations and properties of the MGT equation.
引用
收藏
页码:659 / 675
页数:17
相关论文
共 29 条
[1]   CasADi: a software framework for nonlinear optimization and optimal control [J].
Andersson, Joel A. E. ;
Gillis, Joris ;
Horn, Greg ;
Rawlings, James B. ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) :1-36
[2]  
[Anonymous], 1988, RECHERCHES MATH APPL
[3]  
[Anonymous], 2012, Palest. J. Math
[4]  
[Anonymous], 2012, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, DOI DOI 10.1007/978-1-4419-7805-9
[5]  
[Anonymous], 1996, Lecture Notes Ser., Res. Inst. Math.
[6]  
[Anonymous], 2017, Springer Monographs in Mathematics
[7]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[8]  
Baudouin L, 2010, Lipschitz stability in an inverse problem for the wave equation
[9]   CONVERGENT ALGORITHM BASED ON CARLEMAN ESTIMATES FOR THE RECOVERY OF A POTENTIAL IN THE WAVE EQUATION [J].
Baudouin, Lucie ;
de Buhan, Maya ;
Ervedoza, Sylvain .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) :1578-1613
[10]   Global Carleman Estimates for Waves and Applications [J].
Baudouin, Lucie ;
de Buhan, Maya ;
Ervedoza, Sylvain .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (05) :823-859