On the Motion of a Rigid Body in a Navier-Stokes Liquid under the Action of a Time-Periodic Force

被引:26
作者
Galdi, Giovanni P. [1 ]
Silvestre, Ana L. [2 ,3 ]
机构
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Math, Lisbon, Portugal
[3] Univ Tecn Lisboa, Inst Super Tecn, CEMAT, Lisbon, Portugal
基金
美国国家科学基金会;
关键词
rigid body; Navier-Stokes equations; exterior domain; periodic motions; Lefschetz fixed point theorem; EQUATIONS; EXISTENCE; FLOW;
D O I
10.1512/iumj.2009.58.3758
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the motion of a rigid body in an infinite Navier-Stokes liquid under the action of a time-periodic external force. Assuming that, with respect to an inertial reference frame, the force acts along a fixed direction, we investigate the existence of weak and strong periodic solutions to the equations of the coupled system body-liquid.
引用
收藏
页码:2805 / 2842
页数:38
相关论文
共 51 条
[1]  
ADAMS R.A., 1975, Pure Appl. Math., V65
[2]  
[Anonymous], 1981, Algebraic topology
[3]  
[Anonymous], 1994, Springer Tracts in Natural Philosophy
[4]  
Arnold V I., 1989, Mathematical methods of classical mechanics, V60
[5]  
BESICOVITCH AS, 1932, ALMOST PERIODIC FUNC
[6]   Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle [J].
Cumsille, P ;
Tucsnak, M .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (05) :595-623
[7]   An Lq-analysis of viscous fluid flow past a rotating obstacle [J].
Farwig, R .
TOHOKU MATHEMATICAL JOURNAL, 2006, 58 (01) :129-147
[8]   Lq-theory of a singular "winding" integral operator arising from fluid dynamics [J].
Farwig, R ;
Hishida, T ;
Müller, D .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 215 (02) :297-312
[9]  
FARWIG R, 2005, BANACH CTR PUBL, V70, P73
[10]  
Galdi G.P., 2008, OBERWOLFACH SEMINARS, V37