The cohesive zone model in a problem of delayed hydride cracking of zirconium alloys

被引:4
|
作者
Matvienko, YG [1 ]
机构
[1] Russian Acad Sci, Mech Engn Res Inst, Moscow 101990, Russia
关键词
D O I
10.1023/B:FRAC.0000040969.02493.09
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The crack tip model with the cohesive zone ahead of a finite crack tip has been presented. The estimation of the length of the cohesive zone and the crack tip opening displacement is based on the comparison of the local stress concentration, according to Westergaard's theory, with the cohesive stress. To calculate the cohesive stress, von Mises yield condition at the boundary of the cohesive zone is employed for plane strain and plane stress. The model of the stress distribution with the maximum stress within the cohesive zone is discussed. Local criterion of brittle fracture and modelling of the fracture process zone by cohesive zone were used to describe fracture initiation at the hydride platelet in the process zone ahead of the crack tip. It was shown that the theoretical K-IH- estimation applied to the case of mixed plane condition within the process zone is qualitatively consistent with experimental data for unirradiated Zr-2.5Nb alloy. In the framework of the proposed model, the theoretical value of K-IC(H) for a single hydride platelet at the crack tip has been also estimated.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 50 条
  • [1] The cohesive zone model in a problem of delayed hydride cracking of zirconium alloys
    Yu.G. Matvienko
    International Journal of Fracture, 2004, 128 : 73 - 79
  • [2] Diffusion Model of Delayed Hydride Cracking in Zirconium Alloys
    A. A. Shmakov
    B. A. Kalin
    Yu. G. Matvienko
    R. N. Singh
    P. K. De
    Materials Science, 2004, 40 : 764 - 771
  • [3] Diffusion model of delayed hydride cracking in zirconium alloys
    Shmakov, AA
    Kalin, BA
    Matvienko, YG
    Singh, RN
    De, PK
    MATERIALS SCIENCE, 2004, 40 (06) : 764 - 771
  • [4] Modelling delayed hydride cracking in zirconium alloys
    Scarth, DA
    Smith, E
    IUTAM SYMPOSIUM ON ANALYTICAL AND COMPUTATIONAL FRACTURE MECHANICS OF NON-HOMOGENEOUS MATERIALS, PROCEEDINGS, 2002, 97 : 155 - 165
  • [5] MODELING DELAYED HYDRIDE CRACKING IN ZIRCONIUM ALLOYS
    EADIE, RL
    SMITH, RR
    CANADIAN METALLURGICAL QUARTERLY, 1988, 27 (03) : 213 - 223
  • [6] Delayed hydride cracking in zirconium alloys in a temperature gradient
    Sagat, S
    Chow, CK
    Puls, MP
    Coleman, CE
    JOURNAL OF NUCLEAR MATERIALS, 2000, 279 (01) : 107 - 117
  • [7] Driving force for delayed hydride cracking of zirconium alloys
    Kim, YS
    METALS AND MATERIALS INTERNATIONAL, 2005, 11 (01) : 29 - 38
  • [8] Driving force for delayed Hydride cracking of zirconium alloys
    Young Suk Kim
    Metals and Materials International, 2005, 11 : 29 - 38
  • [9] The first step for delayed hydride cracking in zirconium alloys
    McRae, G. A.
    Coleman, C. E.
    Leitch, B. W.
    JOURNAL OF NUCLEAR MATERIALS, 2010, 396 (01) : 130 - 143
  • [10] Numerical modeling of delayed hydride cracking in zirconium alloys
    Varias, AG
    Massih, AR
    ADVANCES IN MECHANICAL BEHAVIOUR, PLASTICITY AND DAMAGE, VOLS 1 AND 2, PROCEEDINGS, 2000, : 1219 - 1224