SOME CONSTANTS RELATED TO NUMERICAL RANGES

被引:10
作者
Crouzeix, Michel [1 ]
机构
[1] Univ Rennes 1, UMR CNRS 6625, Inst Rech Math Rennes, Campus Beaulieu, F-35042 Rennes, France
关键词
numerical range; spectral set; completely bounded; FUNCTIONAL-CALCULUS; OPERATORS;
D O I
10.1137/15M1020411
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an attempt to progress toward proving the conjecture that the numerical range W(A) is a two-spectral set for the matrix A, we propose a study of various constants. We review some partial results; many problems are still open. We describe our corresponding numerical tests.
引用
收藏
页码:420 / 442
页数:23
相关论文
共 27 条
[1]  
ANDO T, 1973, ACTA SCI MATH, V34, P11
[2]  
[Anonymous], 2000, OPERATOR SPACES
[3]  
[Anonymous], 1997, NUMERICAL RANGE
[4]   Convex domains and K-spectral sets [J].
Badea, C ;
Crouzeix, M ;
Delyon, B .
MATHEMATISCHE ZEITSCHRIFT, 2006, 252 (02) :345-365
[5]   INTERSECTIONS OF SEVERAL DISKS OF THE RIEMANN SPHERE AS K-SPECTRAL SETS [J].
Badea, Catalin ;
Beckermann, Bernhard ;
Crouzeix, Michel .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (01) :37-54
[6]  
Beckermann B., 2014, JAEN J. of Approx, V6, P219
[7]   Operators with numerical range in a conic domain [J].
Beckermann, Bernhard ;
Crouzeix, Michel .
ARCHIV DER MATHEMATIK, 2007, 88 (06) :547-559
[8]   ROOTS OF MATRICES IN THE STUDY OF GMRES CONVERGENCE AND CROUZEIX'S CONJECTURE [J].
Choi, Daeshik ;
Greenbaum, Anne .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (01) :289-301
[9]   A proof of Crouzeix's conjecture for a class of matrices [J].
Choi, Daeshik .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (08) :3247-3257
[10]   Bounds for analytical functions of matrices [J].
Crouzeix, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (04) :461-477