Stack design for portable artificial muscle generators: is it dangerous to be short and fat?

被引:1
作者
Anderson, Iain A. [1 ]
Rosset, Sam [2 ]
McKay, Tom [1 ]
Shea, Herbert [2 ]
机构
[1] Auckland Bioengn Inst, Biomimet Lab, Level 6,70 Symonds St, Auckland, New Zealand
[2] LMTS Microsystems Space Technol, EPFL, Neuchatel, Switzerland
来源
ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2014 | 2014年 / 9056卷
关键词
Energy harvesting; Dielectric elastomer generator;
D O I
10.1117/12.2044940
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Dielectric elastomer generators (DEG) are suited for harvesting energy from low frequency and high strain natural sources including wind, wave and human movement. The stack configuration, for instance, in which a number of layers of DE membrane are placed one atop the other, offers a robust, compact and solid-state way for arranging the DE material for energy harvesting during heel strike. But the end conditions at top and bottom of a stack can substantially limit its ability to strain. Using an analytical model for compression of the stack, we have calculated thickness changes in capacitive membranes along the stack for several cylindrical shapes. DE generators that are short and fat will have approximately parabolic profiles with continuous reduction in layer thickness towards the middle. This will result in higher electrical fields at the middle with greater susceptibility to breakdown. For long, thin DEG stacks, the outward bulging will be confined to zones at the two ends with a more uniform cylindrical profile in between. The placing of inexpensive compliant end-caps between the DEG and a rigid structure will promote more homogeneous deformation across the active layers so that the efficacy of these layers for energy harvesting will improve.
引用
收藏
页数:8
相关论文
共 14 条
[1]   Power for Robotic Artificial Muscles [J].
Anderson, Iain A. ;
Ieropoulos, Ioannis A. ;
McKay, Thomas ;
O'Brien, Benjamin ;
Melhuish, Chris .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2011, 16 (01) :107-111
[2]   Innovative power generators for energy harvesting using electroactive polymer artificial muscles [J].
Chiba, Seiki ;
Waki, Mikio ;
Kornbluh, Roy ;
Pelnine, Ron .
ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2008, 2008, 6927
[3]  
Gent A.N., 1959, PROCEEDING I MECH EN, V173, P111, DOI [10.1243/PIMEPROC195917302202, DOI 10.1243/PIMEPROC195917302202]
[4]   Solar to electrical conversion via liquid crystal elastomers [J].
Hiscock, T. ;
Warner, M. ;
Palffy-Muhoray, P. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
[5]   Axial loading of bonded rubber blocks [J].
Horton, JM ;
Tupholme, GE ;
Gover, MJC .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2002, 69 (06) :836-843
[6]   Stacked dielectric elastomer actuator for tensile force transmission [J].
Kovacs, G. ;
Duering, L. ;
Michel, S. ;
Terrasi, G. .
SENSORS AND ACTUATORS A-PHYSICAL, 2009, 155 (02) :299-307
[7]   An integrated, self-priming dielectric elastomer generator [J].
McKay, Thomas ;
O'Brien, Benjamin ;
Calius, Emilio ;
Anderson, Iain .
APPLIED PHYSICS LETTERS, 2010, 97 (06)
[8]   Self-priming dielectric elastomer generators [J].
McKay, Thomas ;
O'Brien, Benjamin ;
Calius, Emilio ;
Anderson, Iain .
SMART MATERIALS AND STRUCTURES, 2010, 19 (05)
[9]   Soft generators using dielectric elastomers [J].
McKay, Thomas G. ;
O'Brien, Benjamin M. ;
Calius, Emilio P. ;
Anderson, Iain A. .
APPLIED PHYSICS LETTERS, 2011, 98 (14)
[10]   Dielectric elastomers: Generator mode fundamentals and applications [J].
Pelrine, R ;
Kornbluh, R ;
Eckerle, J ;
Jeuck, P ;
Oh, SJ ;
Pei, QB ;
Stanford, S .
SMART STRUCTURES AND MATERIALS 2001: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES, 2001, 4329 :148-156