On the Ramanujan-Lodge harmonic number expansion

被引:16
作者
Mortici, Cristinel [1 ,2 ]
Villarino, Mark B. [3 ]
机构
[1] Valahia Univ Targoviste, Dept Math, Targoviste 130082, Romania
[2] Acad Romanian Scientists, Bucharest 050094, Romania
[3] Univ Costa Rica, Dept Math, San Jose, Costa Rica
关键词
Harmonic numbers; Bernoulli numbers; Asymptotic expansion; Rate of convergence; Approximations; Inequalities; APPROXIMATIONS;
D O I
10.1016/j.amc.2014.11.088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to extend and refine the Ramanujan-Lodge harmonic number expansion into negative powers of a triangular number. We construct a faster asymptotic series and some new sharp inequalities for the harmonic numbers. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:423 / 430
页数:8
相关论文
共 14 条
[1]  
Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]  
[Anonymous], RAMANUJANS NOTEBOOKS
[3]  
[Anonymous], 2008, J. Inequal. Pure Appl. Math
[4]  
Cesaro E., 1885, NOUVELLES ANN MATH, V4, P295
[5]  
Chen C.P., 2010, Sci. Magna, V6, P99
[6]   A QUICKER CONVERGENCE TO EULERS CONSTANT [J].
DETEMPLE, DW .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (05) :468-470
[7]  
Lodge A., 1904, MESSENGER MATH, V30, P103
[8]   On the harmonic number expansion by Ramanujan [J].
Mortici, Cristinel ;
Chen, Chao-Ping .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[9]   A continued fraction approximation of the gamma function [J].
Mortici, Cristinel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) :405-410
[10]   Ramanujan formula for the generalized Stirling approximation [J].
Mortici, Cristinel .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2579-2585