GENUS PERIODS, GENUS POINTS AND CONGRUENT NUMBER PROBLEM

被引:11
作者
Tian, Ye [1 ]
Yuan, Xinyi [2 ]
Zhang, Shou-Wu [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Congruent number; Birch and Swinnerton-Dyer conjecture; Tate-Shafarevich group; Heegner point; Selmer group; Gross-Zagier formula; Waldspurger formula; L-function; ELLIPTIC-CURVES; HEEGNER POINTS; SWINNERTON-DYER; DERIVATIVES; CONJECTURE; CHARACTERS; SYMMETRY; FORMULA; GL(2); BIRCH;
D O I
10.4310/AJM.2017.v21.n4.a5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on an idea of Tian we establish a new sufficient condition for a positive integer n to be a congruent number in terms of the Legendre symbols for the prime factors of n. Our criterion generalizes previous results of Heegner, Birch-Stephens, Monsky, and Tian, and conjecturally provides a list of positive density of congruent numbers. Our method of proving the criterion is to give formulae for the analytic Tate-Shafarevich number L(n) in terms of the so-called genus periods and genus points. These formulae are derived from the Waldspurger formula and the generalized Gross-Zagier formula of Yuan-Zhang-Zhang.
引用
收藏
页码:721 / 774
页数:54
相关论文
共 32 条
[1]  
[Anonymous], THESIS
[2]  
Birch B.J., 1966, Topology, V5, P295, DOI [10.1016/0040-9383(66)90021-8, DOI 10.1016/0040-9383(66)90021-8]
[3]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939
[4]   CONJECTURE OF BIRCH AND SWINNERTON-DYER [J].
COATES, J ;
WILES, A .
INVENTIONES MATHEMATICAE, 1977, 39 (03) :223-251
[5]  
Coates J., IWASAWA THEORY GROSS
[6]  
GOLDFELD D, 1979, LECT NOTES MATH, V751, P108
[7]   On the conjecture of Birch and Swinnerton-Dyer [J].
GonzalezAviles, CD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :4181-4200
[8]   HEEGNER POINTS AND DERIVATIVES OF L-SERIES [J].
GROSS, BH ;
ZAGIER, DB .
INVENTIONES MATHEMATICAE, 1986, 84 (02) :225-320
[9]   LOCAL ORDERS, ROOT NUMBERS, AND MODULAR-CURVES [J].
GROSS, BH .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (06) :1153-1182
[10]   THE SIZE OF SELMER GROUPS FAR THE CONGRUENT NUMBER PROBLEM .2. [J].
HEATHBROWN, DR .
INVENTIONES MATHEMATICAE, 1994, 118 (02) :331-370