Hamiltonian approach to nonlinear oscillators

被引:199
作者
He, Ji-Huan [1 ]
机构
[1] Donghua Univ, Modern Text Inst, Shanghai 200051, Peoples R China
关键词
Nonlinear oscillator; Variational principle; Hamiltonian; Amplitude-frequency relationship; ENERGY-BALANCE METHOD; AMPLITUDE-FREQUENCY FORMULATION; MAX-MIN APPROACH; DISCONTINUITIES;
D O I
10.1016/j.physleta.2010.03.064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Hamiltonian approach to nonlinear oscillators is suggested. A conservative oscillator always admits a Hamiltonian invariant, H, which keeps unchanged during oscillation. This property is used to obtain approximate frequency-amplitude relationship of a nonlinear oscillator with acceptable accuracy. Two illustrating examples are given to elucidate the solution procedure. (C) 2010 Elsevier By. All rights reserved.
引用
收藏
页码:2312 / 2314
页数:3
相关论文
共 23 条
[1]  
Afrouzi GA, 2009, INT J NONLIN SCI NUM, V10, P301
[2]   A Novel Rational Harmonic Balance Approach for Periodic Solutions of Conservative Nonlinear Oscillators [J].
Belendez, A. ;
Gimeno, E. ;
Alvarez, M. L. ;
Gallego, S. ;
Ortuno, M. ;
Mendez, D. I. .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (01) :13-26
[3]  
Demirbag SA, 2009, INT J NONLIN SCI NUM, V10, P27
[4]   Solution of nonlinear cubic-quintic Duffing oscillators using He's Energy Balance Method [J].
Ganji, D. D. ;
Gorji, M. ;
Soleimani, S. ;
Esmaeilpour, M. .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (09) :1263-1268
[5]   Application of amplitude-frequency formulation to nonlinear oscillation system of the motion of a rigid rod rocking back [J].
Ganji, S. S. ;
Ganji, D. D. ;
Babazadeh, H. ;
Sadoughi, N. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (02) :157-166
[6]   He's ENERGY BALANCE AND He's VARIATIONAL METHODS FOR NONLINEAR OSCILLATIONS IN ENGINEERING [J].
Ganji, S. S. ;
Ganji, D. D. ;
Karimpour, S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (03) :461-471
[7]   Periodic Solution for Strongly Nonlinear Vibration Systems by He's Energy Balance Method [J].
Ganji, S. S. ;
Ganji, D. D. ;
Ganji, Z. Z. ;
Karimpour, S. .
ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (01) :79-92
[8]   Preliminary report on the energy balance for nonlinear oscillations [J].
He, JH .
MECHANICS RESEARCH COMMUNICATIONS, 2002, 29 (2-3) :107-111
[9]   An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering [J].
He, Ji-Huan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (21) :3487-3578
[10]  
He JH, 2008, INT J NONLIN SCI NUM, V9, P207