Energy scattering for a class of inhomogeneous nonlinear Schrodinger equation in two dimensions

被引:10
作者
Van Duong Dinh [1 ,2 ]
机构
[1] Univ Lille, Lab Paul Painleve, UMR 8524, CNRS, F-59655 Villeneuve Dascq, France
[2] HCMC Univ Educ, Dept Math, 280 An Duong Vuong, Ho Chi Minh, France
关键词
Inhomogeneous nonlinear Schrodinger equation; Scattering; ground state; radial Sobolev embedding; GLOBAL WELL-POSEDNESS; BLOW-UP SOLUTIONS; SOLITARY WAVES; GROUND-STATE; UNIQUENESS; EXISTENCE; STABILITY;
D O I
10.1142/S0219891621500016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of L-2-supercritical inhomogeneous nonlinear Schrodinger equations in two dimensions i partial derivative(t)u + Delta u = +/-|x|(-b)|u|(alpha)u, (t,x) is an element of R x R-2, where 0 < b < 1 and alpha > 2 - b. Using a new approach of Arora et al. [Scattering below the ground state for the 2D radial nonlinear Schrodinger equation, Proc. Amer. Math. Soc. 148 (2020) 1653-1663], we show the energy scattering for the equation with radially symmetric initial data. In the focusing case, our result extends the one of Farah and Guzman [Scattering for the radial focusing INLS equation in higher dimensions, Bull. Braz. Math. Soc. (N.S.) 51 (2020) 449-512] to the whole range of b where the local well-posedness is available. In the defocusing case, our result extends the one in [V. D. Dinh, Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrodinger equation, J. Evol. Equ. 19(2) (2019) 411-434], where the energy scattering for non-radial initial data was established in dimensions N >= 3.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 31 条
[1]  
[Anonymous], 2017, CBMS Regional Series in Mathematics, V125
[2]   SCATTERING BELOW THE GROUND STATE FOR THE 2d RADIAL NONLINEAR SCHRODINGER EQUATION [J].
Arora, Anudeep Kumar ;
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (04) :1653-1663
[3]   Soliton stability versus collapse [J].
Bergé, L .
PHYSICAL REVIEW E, 2000, 62 (03) :R3071-R3074
[4]   Scattering of radial solutions to the inhomogeneous nonlinear Schrodinger equation [J].
Campos, Luccas .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
[5]  
Cazenave T., 2003, Courant Lecture Notes, Amer. Math. Soc, V10, P346
[6]  
Chen JQ, 2007, DISCRETE CONT DYN-B, V8, P357
[7]   On a class of nonlinear inhomogeneous Schrödinger equation [J].
Chen J. .
Journal of Applied Mathematics and Computing, 2010, 32 (01) :237-253
[8]  
Combet V, 2016, J EVOL EQU, V16, P483, DOI 10.1007/s00028-015-0309-z
[9]   On Nonlinear Schrodinger Equations with Repulsive Inverse-Power Potentials [J].
Dinh, Van Duong .
ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
[10]   A NEW PROOF OF SCATTERING BELOW THE GROUND STATE FOR THE 3D RADIAL FOCUSING CUBIC NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4859-4867