Development and validation of a knowledge-based score to predict Fried's frailty phenotype across multiple settings using one-year hospital discharge data: The electronic frailty score

被引:24
|
作者
Le Pogam, Marie-Annick [1 ]
Seematter-Bagnoud, Laurence [1 ]
Niemi, Tapio [1 ]
Assouline, Dan [1 ]
Gross, Nathan [1 ]
Trachsel, Bastien [2 ]
Rousson, Valentin [2 ]
Peytremann-Bridevaux, Isabelle [1 ]
Burnand, Bernard [1 ]
Santos-Eggimann, Brigitte [1 ]
机构
[1] Univ Lausanne, Ctr Primary Care & Publ Hlth Unisante, Dept Epidemiol & Hlth Syst, 10 Route Corn, CH-1010 Lausanne, Switzerland
[2] Univ Lausanne, Ctr Primary Care & Publ Hlth Unisante, Dept Training Res & Innovat, 113 Route Berne, CH-1010 Lausanne, Switzerland
关键词
frailty; ICD-10; supervised machine learning; geriatric assessment; routinely collected; health data; COMORBIDITY; ADJUSTMENT; PREVALENCE; DISABILITY; MORTALITY; INDEX;
D O I
10.1016/j.eclinm.2021.101260
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Most claims-based frailty instruments have been designed for group stratification of older populations according to the risk of adverse health outcomes and not frailty itself. We aimed to develop and validate a tool based on one-year hospital discharge data for stratification on Fried's frailty phenotype (FP). Methods We used a three-stage development/validation approach. First, we created a clinical knowledge-driven electronic frailty score (eFS) calculated as the number of deficient organs/systems among 18 critical ones identified from the International Statistical Classification of Diseases and Related Problems, 10th Revision (ICD-10) diagnoses coded in the year before FP assessment. Second, for eFS development and internal validation, we linked individual records from the Lc65+ cohort database to inpatient discharge data from Lausanne University Hospital (CHUV) for the period 2004-2015. The development/internal validation sample included community-dwelling, non-institutionalised residents of Lausanne (Switzerland) recruited in the Lc65+ cohort in three waves (2004, 2009, and 2014), aged 65-70 years at enrolment, and hospitalised at the CHUV at least once in the year preceding the FP assessment. Using this sample, we selected the best performing model for predicting the dichotomised FP, with the eFS or ICD-10-based variables as predictors. Third, we conducted an external validation using 2016 Swiss nationwide hospital discharge data and compared the performance of the eFS model in predicting 13 adverse outcomes to three models relying on well-designed and validated claims-based scores (Claims-based Frailty Index, Hospital Frailty Risk Score, Dr Foster Global Frailty Score). Findings In the development/internal validation sample (n = 469), 14.3% of participants (n = 67) were frail. Among 34 models tested, the best-subsets logistic regression model with four predictors (age and sex at FP assessment, time since last hospital discharge, eFS) performed best in predicting the dichotomised FP (area under the curve=0.71; F1 score=0.39) and one-year adverse health outcomes. On the external validation sample (n = 54,815; 153 acute care hospitals), the eFS model demonstrated a similar performance to the three other claims-based scoring models. According to the eFS model, the external validation sample showed an estimated prevalence of 56.8% (n = 31,135) of frail older inpatients at admission. Interpretation The eFS model is an inexpensive, transportable and valid tool allowing reliable group stratification and individual prioritisation for comprehensive frailty assessment and may be applied to both hospitalised and community-dwelling older adults. Copyright (C) 2021 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 3 条
  • [1] Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study
    Gilbert, Thomas
    Neuburger, Jenny
    Kraindler, Joshua
    Keeble, Eilis
    Smith, Paul
    Ariti, Cono
    Arora, Sandeepa
    Street, Andrew
    Parker, Stuart
    Roberts, Helen C.
    Bardsley, Martin
    Conroy, Simon
    LANCET, 2018, 391 (10132) : 1775 - 1782
  • [2] One- to 10-year Status Epilepticus Mortality (SEM) score after 30 days of hospital discharge: development and validation using competing risks analysis
    Sirikarn, Prapassara
    Pattanittum, Porjai
    Tiamkao, Somsak
    BMC NEUROLOGY, 2019, 19 (01)
  • [3] One- to 10-year Status Epilepticus Mortality (SEM) score after 30 days of hospital discharge: development and validation using competing risks analysis
    Prapassara Sirikarn
    Porjai Pattanittum
    Somsak Tiamkao
    BMC Neurology, 19