MULTIPLICATIVE REDUCTION AND THE CYCLOTOMIC MAIN CONJECTURE FOR GL2

被引:18
作者
Skinner, Christopher [1 ]
机构
[1] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Iwasawa theory; special values of L-functions; Selmer groups; MODULAR-FORMS; ELLIPTIC-CURVES; IWASAWA INVARIANTS; REPRESENTATIONS;
D O I
10.2140/pjm.2016.283.171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the cyclotomic Iwasawa-Greenberg main conjecture holds for a large class of modular forms with multiplicative reduction at p, extending previous results for the good ordinary case. In fact, the multiplicative case is deduced from the good case through the use of Hida families and a simple Fitting ideal argument.
引用
收藏
页码:171 / 200
页数:30
相关论文
共 33 条
[1]  
Amice Y., 1975, AST RISQUE, V24/25, P119
[2]  
[Anonymous], 1976, MAT SB
[3]  
[Anonymous], 2004, ASTERISQUE
[4]  
[Anonymous], 1976, MATEMATICHESKII SBOR
[5]  
[Anonymous], 1994, Contemp. Math.
[6]   Proof of the Mahler-Manin conjecture [J].
BarreSireix, K ;
Diaz, G ;
Gramain, F ;
Philibert, G .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :1-9
[7]  
Bloch S., 1990, Progr. Math., VI, P333
[8]  
CARAYOL H, 1986, ANN SCI ECOLE NORM S, V19, P409
[9]   Tamagawa factors for certain semi-stable representations [J].
Dummigan, N .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :835-845
[10]   Variation of Iwasawa invariants in Hida families [J].
Emerton, M ;
Pollack, R ;
Weston, T .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :523-580