Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms

被引:32
作者
Evenbly, G. [1 ]
Vidal, G. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
基金
澳大利亚研究理事会;
关键词
FORMULATION;
D O I
10.1088/1367-2630/12/2/025007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ability of entanglement renormalization (ER) to generate a proper real-space renormalization group (RG) flow in extended quantum systems is analyzed in the setting of harmonic lattice systems in D = 1 and 2 spatial dimensions. A conceptual overview of the steps involved in momentum-space RG is provided and contrasted against the equivalent steps in the real-space setting. The real-space RG flow, as generated by ER, is compared against the exact results from momentum-space RG, including an investigation of a critical fixed point and the effect of relevant and irrelevant perturbations.
引用
收藏
页数:27
相关论文
共 41 条
  • [1] Entanglement renormalization and topological order
    Aguado, Miguel
    Vidal, Guifre
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (07)
  • [2] Entanglement properties of the harmonic chain
    Audenaert, K
    Eisert, J
    Plenio, MB
    Werner, RR
    [J]. PHYSICAL REVIEW A, 2002, 66 (04): : 14
  • [3] BARTHEL T, 2009, ARXIV09073689V2
  • [4] Entanglement entropy and quantum field theory
    Calabrese, P
    Cardy, J
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [5] Cardy J. L, 1996, CAMBRIDGE LECT NOTES
  • [6] Multiscale entanglement renormalization ansatz in two dimensions: Quantum Ising model
    Cincio, Lukasz
    Dziarmaga, Jacek
    Rams, Marek M.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (24)
  • [7] CORBOZ P, 2009, ARXIV09044151
  • [8] Fermionic multiscale entanglement renormalization ansatz
    Corboz, Philippe
    Vidal, Guifre
    [J]. PHYSICAL REVIEW B, 2009, 80 (16):
  • [9] Entanglement-area law for general bosonic harmonic lattice systems
    Cramer, M
    Eisert, J
    Plenio, MB
    Dreissig, J
    [J]. PHYSICAL REVIEW A, 2006, 73 (01):
  • [10] Unifying variational methods for simulating quantum many-body systems
    Dawson, C. M.
    Eisert, J.
    Osborne, T. J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (13)