Static behaviour of functionally graded sandwich beams using a quasi-3D theory

被引:133
作者
Vo, Thuc P. [1 ]
Thai, Huu-Tai [2 ]
Trung-Kien Nguyen [3 ]
Inam, Fawad [1 ]
Lee, Jaehong [4 ]
机构
[1] Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[2] Univ New S Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[3] Univ Tech Educ Ho Chi Minh City, Fac Civil Engn & Appl Mech, Ho Chi Minh City, Vietnam
[4] Sejong Univ, Dept Architectural Engn, Seoul 143747, South Korea
基金
新加坡国家研究基金会;
关键词
Hybrid; Numerical analysis; SHEAR DEFORMATION-THEORY; HIGHER-ORDER SHEAR; FREE-VIBRATION ANALYSIS; ADVANCED COMPOSITE PLATES; BENDING ANALYSIS; FINITE-ELEMENT; FGM PLATES; COMPREHENSIVE ANALYSIS; ELASTIC FOUNDATIONS; BUCKLING ANALYSIS;
D O I
10.1016/j.compositesb.2014.08.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents static behaviour of functionally graded (FG) sandwich beams by using a quasi-3D theory, which includes both shear deformation and thickness stretching effects. Various symmetric and non-symmetric sandwich beams with FG material in the core or skins under the uniformly distributed load are considered. Finite element model (FEM) and Navier solutions are developed to determine the displacement and stresses of FG sandwich beams for various power-law index, skin-core-skin thickness ratios and boundary conditions. Numerical results are compared with those predicted by other theories to show the effects of shear deformation and thickness stretching on displacement and stresses. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:59 / 74
页数:16
相关论文
共 44 条
  • [21] A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates
    Neves, A. M. A.
    Ferreira, A. J. M.
    Carrera, E.
    Cinefra, M.
    Roque, C. M. C.
    Jorge, R. M. N.
    Soares, C. M. M.
    [J]. COMPOSITE STRUCTURES, 2012, 94 (05) : 1814 - 1825
  • [22] A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates
    Neves, A. M. A.
    Ferreira, A. J. M.
    Carrera, E.
    Roque, C. M. C.
    Cinefra, M.
    Jorge, R. M. N.
    Soares, C. M. M.
    [J]. COMPOSITES PART B-ENGINEERING, 2012, 43 (02) : 711 - 725
  • [23] Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method
    Qian, LF
    Batra, RC
    Chen, LM
    [J]. COMPOSITES PART B-ENGINEERING, 2004, 35 (6-8) : 685 - 697
  • [24] Reddy J, 2003, Mechanics of laminated composite plates and shells theory and analysis
  • [25] Reddy J.N., 2011, Int. J. Aerosp. Lightweight Struct, V1, P1, DOI [10.3850/S201042861100002X, DOI 10.3850/S201042861100002X]
  • [26] A SIMPLE HIGHER-ORDER THEORY FOR LAMINATED COMPOSITE PLATES
    REDDY, JN
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (04): : 745 - 752
  • [27] An elasticity solution for functionally graded beams
    Sankar, BV
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (05) : 689 - 696
  • [28] Three-dimensional non-linear elasticity-based 3D cubic B-spline finite element shear buckling analysis of rectangular orthotropic FGM plates surrounded by elastic foundations
    Shariyat, M.
    Asemi, K.
    [J]. COMPOSITES PART B-ENGINEERING, 2014, 56 : 934 - 947
  • [29] Static response and free vibration analysis of FGM plates using higher order shear deformation theory
    Talha, Mohammad
    Singh, B. N.
    [J]. APPLIED MATHEMATICAL MODELLING, 2010, 34 (12) : 3991 - 4011
  • [30] Thai H-T, 2013, ACTA MECH, P1