Analysis of energy transport considering Arrhenius activation energy and chemical reaction in radiative Maxwell nanofluid flow

被引:23
作者
Irfan, Muhammad [1 ]
Khan, Masood [2 ]
Muhammad, Taseer [3 ]
Waqas, Muhammad [4 ]
Khan, Waqar Azeem [5 ,6 ]
机构
[1] Univ WAH, Dept Math, Quaid Ave, Rawalpindi 47040, Punjab, Pakistan
[2] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
[3] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
[4] Natl Univ Technol, NUTECH Sch Appl Sci & Humanities, Islamabad 44000, Pakistan
[5] King AbdulAziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[6] Mohi Ud Din Islamic Univ, Dept Math, Nerian Sharif 12010, Azad Jammu & Ka, Pakistan
关键词
Maxwell nanofluid; Magnetic properties; Stagnation point flow; Non-linear thermal radiation; Chemical reaction; MAGNETIC-FIELD; HEAT-TRANSFER; SUBJECT; IMPACT;
D O I
10.1016/j.cplett.2021.139323
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanofluids have innovative possessions that create them hypothetically worthwhile in numerous heat transportation uses, comprising apparatus chilling/vehicle thermal controlling, firewood cells, curative progressions, hybrid-energetic devices, internal freezer and chiller etc. Here the thermo-solutal possessions of convective conditions on nonlinear radiated magnetized Maxwell nanofluid with activation energy in the stagnation region. The homotopic process has been implemented for solutions. The physical parameters are plotted graphically. These outcomes reported that the radiation factor and Prandtl number decline; however, thermophoretic factor intensifies the temperature field of Maxwell nanofluid. Moreover, activation energy factor and mass Biot number exaggerate the concentration field. Additionally, the outcomes for Newtonian case with assessment of former prose are structured in this analysis.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Thermal prospective of Casson nano-materials in radiative binary reactive flow near oblique stagnation point flow with activation energy applications [J].
Abbasi, A. ;
Khan, Sami Ullah ;
Al-Khaled, Kamel ;
Khan, M. Ijaz ;
Farooq, W. ;
Galal, Ahmed M. ;
Javid, Khurram ;
Malik, M. Y. .
CHEMICAL PHYSICS LETTERS, 2022, 786
[2]   MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet [J].
Abel, M. Subhas ;
Tawade, Jagadish V. ;
Nandeppanavar, Mahantesh M. .
MECCANICA, 2012, 47 (02) :385-393
[3]   Heat generation and nonlinear radiation effects on MHD Casson nanofluids over a thin needle embedded in porous medium [J].
Akinshilo, A. T. ;
Mabood, F. ;
Ilegbusi, A. O. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 127
[4]   Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage [J].
Bhatti, M. M. ;
Arain, M. B. ;
Zeeshan, A. ;
Ellahi, R. ;
Doranehgard, M. H. .
JOURNAL OF ENERGY STORAGE, 2022, 45
[5]   Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects [J].
Bhatti, M. M. ;
Abdelsalam, Sara, I .
WAVES IN RANDOM AND COMPLEX MEDIA, 2021, :4688-4713
[6]   Study of Activation Energy on the Movement of Gyrotactic Microorganism in a Magnetized Nanofluids Past a Porous Plate [J].
Bhatti, Muhammad Mubashir ;
Shahid, Anwar ;
Abbas, Tehseen ;
Alamri, Sultan Z. ;
Ellahi, Rahmat .
PROCESSES, 2020, 8 (03)
[7]  
Choi S.U., 1995, ENHANCING THERMAL CO
[8]   CVFEM simulation for Fe3O4-H2O nanofluid in an annulus between two triangular enclosures subjected to magnetic field and thermal radiation [J].
Dogonchi, A. S. ;
Asghar, Zeeshan ;
Waqas, M. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 112
[9]   Three Dimensional Boundary Layer Flow of MHD Maxwell Nanofluid over a Non-Linearly Stretching Sheet with Nonlinear Thermal Radiation [J].
Gireesha, B. J. ;
Prasannakumara, B. C. ;
Umeshaiah, M. ;
Shashikumar, N. S. .
JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2021, 10 (02) :263-277