Optimal hydrothermal synthesis of hierarchical porous ZnMn2O4 microspheres with more porous core for improved lithium storage performance

被引:27
作者
Ni, Taolai [1 ]
Zhong, Yijun [1 ]
Sunarso, Jaka [2 ]
Zhou, Wei [1 ]
Cai, Rui [1 ]
Shao, Zongping [1 ,2 ]
机构
[1] Nanjing Tech Univ, Coll Chem & Chem Engn, State Key Lab Mat Oriented Chem Engn, 5 Xin Mofan Rd, Nanjing 210009, Jiangsu, Peoples R China
[2] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
关键词
ZnMn2O4; Li-ion battery; anode; hierarchical pore; microsphere; ANODE MATERIAL; NANOCRYSTALLINE ZNMN2O4; TEMPERATURE SYNTHESIS; HOLLOW NANOSPHERES; FACILE SYNTHESIS; ION; FABRICATION; CAPACITY; BATTERY; SPHERES;
D O I
10.1016/j.electacta.2016.04.098
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
ZnMn2O4 spinel is a promising anode material for lithium-ion batteries (LIBs) which can utilize both conversion reaction and alloying reaction to provide its lithium storage capacity. In this study, we developed hierarchical porous ZnMn2O4 microspheres with more porous interior as high-performance anode for LIBs by adjusting the parameters of hydrothermal synthesis (e.g., temperature and time). With increasing hydrothermal temperature, the morphology of the microspheres progressively changed from a hollow interior to a porous interior, while the thickness of the more dense shell was reduced. The crystallinity of the spinel phase increased with hydrothermal temperature and time. The resultant morphologies of the samples indicate the dominant formation of hollow microspheres at 140 and 160 degrees C and porous microspheres with more dense shell at 180 degrees C. N-2 adsorption-desorption isotherms reveal the dominant presence of mesopores and increased porosity with increasing temperature and time durations. Tested in a coin-type half-cell with Li counter electrode, a sample with optimized hydrothermal condition at 180 degrees C for 9 hours provides the optimal anode performance, retained 726 mAh g(-1) capacity after 90 cycles at 500 mAg(-1) current discharge rate. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 46 条
[1]   Pyro-Synthesis of Nanostructured Spinel ZnMn2O4/C as Negative Electrode for Rechargeable Lithium-Ion Batteries [J].
Alfaruqi, Muhammad Hilmy ;
Rai, Alok Kumar ;
Mathew, Vinod ;
Jo, Jeonggeun ;
Kim, Jaekook .
ELECTROCHIMICA ACTA, 2015, 151 :558-564
[2]   Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries [J].
Amatucci, GG ;
Schmutz, CN ;
Blyr, A ;
Sigala, C ;
Gozdz, AS ;
Larcher, D ;
Tarascon, JM .
JOURNAL OF POWER SOURCES, 1997, 69 (1-2) :11-25
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries [J].
Bai, Zhongchao ;
Fan, Na ;
Sun, Changhui ;
Ju, Zhicheng ;
Guo, Chunli ;
Yang, Jian ;
Qian, Yitai .
NANOSCALE, 2013, 5 (06) :2442-2447
[5]   Rational synthesis of ZnMn2O4 porous spheres and graphene nanocomposite with enhanced performance for lithium-ion batteries [J].
Cai, Daoping ;
Wang, Dandan ;
Huang, Hui ;
Duan, Xiaochuan ;
Liu, Bin ;
Wang, Lingling ;
Liu, Yuan ;
Li, Qiuhong ;
Wang, Taihong .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (21) :11430-11436
[6]   Self-templated synthesis of hollow porous submicron ZnMn2O4 sphere as anode for lithium-ion batteries [J].
Chen, Xue-Fa ;
Qie, Long ;
Zhang, Lu-Lu ;
Zhang, Wu-Xing ;
Huang, Yun-Hui .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 559 :5-10
[7]   High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn) [J].
Courtel, Fabrice M. ;
Duncan, Hugues ;
Abu-Lebdeh, Yaser ;
Davidson, Isobel J. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :10206-10218
[8]   Porous core-shell LiMn2O4 microellipsoids as high-performance cathode materials for Li-ion batteries [J].
Deng, Jianqiu ;
Pan, Jin ;
Yao, Qingrong ;
Wang, Zhongmin ;
Zhou, Huaiying ;
Rao, Guanghui .
JOURNAL OF POWER SOURCES, 2015, 278 :370-374
[9]   Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries [J].
Deng, Yuanfu ;
Tang, Shidi ;
Zhang, Qiumei ;
Shi, Zhicong ;
Zhang, Leiting ;
Zhan, Shuzhong ;
Chen, Guohua .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (32) :11987-11995
[10]   Formation of SnO2 Hollow Nanospheres inside Mesoporous Silica Nanoreactors [J].
Ding, Shujiang ;
Chen, Jun Song ;
Qi, Genggeng ;
Duan, Xiaonan ;
Wang, Zhiyu ;
Giannelis, Emmanuel P. ;
Archer, Lynden A. ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (01) :21-23