Core optimization of 5 MWth Lead-bismuth cooled Super small Module Reactor (LSMR) based on separative work

被引:4
作者
Chen, Zhong [1 ,2 ]
Lv, Zhongliang [1 ]
Zhao, Zi Jia [1 ]
Yuan, Baoxin [3 ]
Tian, Lichao [1 ]
Jiang, Jing [1 ]
机构
[1] Natl Univ Def Technol, Coll Liberal Arts & Sci, Changsha 410073, Hunan, Peoples R China
[2] Southwest Univ Sci & Technol, Mianyang 621010, Sichuan, Peoples R China
[3] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Sichuan, Peoples R China
基金
美国国家科学基金会;
关键词
Core optimization; Lead-bismuth cooled Super small Module; Reactor; Separative work;
D O I
10.1016/j.anucene.2018.06.030
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
As a concept of Lead-bismuth cooled Super small Module Reactor, LSMR was proposed for achieving high economic quality. In this paper, based on separative work, preliminary core optimization on LSMR was performed by using oxide fuel. The studies were committed to improving the neutron multiplication performance per separative work (k(eff)/SW) under three key design constraints. Subject to the design constraints on the effective multiplication factor, the core radius and the fuel enrichment, the optimization studies had been performed for LSMR. The results showed that the maximum k(eff)/SW was primarily related to the fuel enrichment under imposed design constraints. The maximum k(eff)/SW could be about 4.4E-6 when the fuel enrichment was 19.75% and the core radius was 50 cm based on the specific design. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:735 / 741
页数:7
相关论文
共 12 条
[1]  
[曹亚丽 Cao Yali], 2014, [核电子学与探测技术, Nuclear Electronics and Detection Technology], V34, P801
[2]   ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology [J].
Chadwick, M. B. ;
Oblozinsky, P. ;
Herman, M. ;
Greene, N. M. ;
McKnight, R. D. ;
Smith, D. L. ;
Young, P. G. ;
MacFarlane, R. E. ;
Hale, G. M. ;
Frankle, S. C. ;
Kahler, A. C. ;
Kawano, T. ;
Little, R. C. ;
Madland, D. G. ;
Moller, P. ;
Mosteller, R. D. ;
Page, P. R. ;
Talou, P. ;
Trellue, H. ;
White, M. C. ;
Wilson, W. B. ;
Arcilla, R. ;
Dunford, C. L. ;
Mughabghab, S. F. ;
Pritychenko, B. ;
Rochman, D. ;
Sonzogni, A. A. ;
Lubitz, C. R. ;
Trumbull, T. H. ;
Weinman, J. P. ;
Brown, D. A. ;
Cullen, D. E. ;
Heinrichs, D. P. ;
McNabb, D. P. ;
Derrien, H. ;
Dunn, M. E. ;
Larson, N. M. ;
Leal, L. C. ;
Carlson, A. D. ;
Block, R. C. ;
Briggs, J. B. ;
Cheng, E. T. ;
Huria, H. C. ;
Zerkle, M. L. ;
Kozier, K. S. ;
Courcelle, A. ;
Pronyaev, V. ;
van der Marck, S. C. .
NUCLEAR DATA SHEETS, 2006, 107 (12) :2931-3059
[3]  
Defense Science Board, 2016, TASK FORC EN SYST FO
[4]  
Duderstadt J.J., 1991, Nuclear Reactor Analysis
[5]  
Glaser A., 2005, 27 INT M RED ENR RES
[6]  
Intergovernmental Panel on Climate Change, 2014, ASS TRANSF PATHW CLI, P00150
[7]  
Liu Zhiming, 2005, INT ELECT POWER CHIN, V9, P27
[8]   CAD-based interface programs for fusion neutron transport simulation [J].
Wu, Y. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (7-11) :1987-1992
[9]   CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC [J].
Wu, Yican ;
Song, Jing ;
Zheng, Huaqing ;
Sun, Guangyao ;
Hao, Lijuan ;
Long, Pengcheng ;
Hu, Liqin .
ANNALS OF NUCLEAR ENERGY, 2015, 82 :161-168
[10]  
XIONG H.-H., 2015, VALUE ENG, V2, P30