Well-posedness and regularity of the generalized Burgers equation in periodic Gevrey spaces

被引:3
作者
Holmes, John [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Burgers equation; Gevrey regularity; Initial value problem; Multilinear estimates; Sobolev spaces; Uniform radius of analyticity; SEMILINEAR PARABOLIC EQUATIONS; CAUCHY-PROBLEM; ILL-POSEDNESS; TIME;
D O I
10.1016/j.jmaa.2017.04.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the generalized Burgers equation in a class of Gevrey functions G(sigma,delta,s) (T). We show that the generalized Burgers equation is well-posed in this space. Furthermore, we show that the solution is Gevrey-sigma in the spacial variable and Gevrey-2 sigma in the time variable. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 40
页数:23
相关论文
共 31 条
[1]   PROPAGATION OF THE ANALYZING CAPABILITY OF SOLUTIONS IN NONLINEAR HYPERBOLIC SYSTEMS [J].
ALINHAC, S ;
METIVIER, G .
INVENTIONES MATHEMATICAE, 1984, 75 (02) :189-204
[2]  
Bekiranov D., 1996, DIFFER INTEGRAL EQU, V9, P1253
[3]   Fractal Burgers equations [J].
Biler, P ;
Funaki, T ;
Woyczynski, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :9-46
[4]   Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation [J].
Bona, JL ;
Grujic, Z ;
Kalisch, H .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (06) :783-797
[5]   ON A QUASI-LINEAR PARABOLIC EQUATION OCCURRING IN AERODYNAMICS [J].
COLE, JD .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (03) :225-236
[6]   Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation [J].
Dix, DB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (03) :708-724
[7]  
Ferrari AB, 1998, COMMUN PART DIFF EQ, V23, P1
[8]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[9]  
Fujita H., 1962, Sem. Mat. Univ. Padova, V32, P243
[10]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212