Tube-cantilever double resonance enhanced fiber-optic photoacoustic spectrometer

被引:50
|
作者
Chen, Ke [1 ]
Deng, Hong [1 ]
Guo, Min [1 ]
Luo, Chen [1 ]
Liu, Shuai [1 ]
Zhang, Bo [1 ]
Ma, Fengxiang [2 ]
Zhu, Feng [2 ]
Gong, Zhenfeng [1 ]
Peng, Wei [3 ]
Yu, Qingxu [1 ]
机构
[1] Dalian Univ Technol, Sch Optoelect Engn & Instrumentat Sci, Dalian 116024, Liaoning, Peoples R China
[2] State Grid Anhui Elect Power Co Ltd, Elect Power Res Inst, Hefei 230601, Anhui, Peoples R China
[3] Dalian Univ Technol, Sch Phys, Dalian 116024, Liaoning, Peoples R China
来源
关键词
Trace gas detection; Double resonance; Cantilever; Fiber-optic sensor; Photoacoustic spectroscopy; HIGH-SENSITIVITY; GAS-ANALYSIS; SENSOR; SPECTROSCOPY; TRACES;
D O I
10.1016/j.optlastec.2019.105894
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An ultra-high sensitive trace gas detection method based on tube-cantilever double resonance enhanced fiberoptic photoacoustic spectroscopy (PAS) is proposed. The first-order resonant frequencies of the acoustic resonant tube and the fiber-optic cantilever microphone were both equal to the frequency of the photoacoustic pressure signal. This method combines the amplitude amplification of the photoacoustic pressure wave in an acoustic resonant tube with the response enhancement of the photoacoustic signal by the cantilever, making the gas detection extremely sensitive. An experimental double resonance enhanced photoacoustic spectrometer was built for trace acetylene detection at the wavelength of 1532.83 nm. A noise equivalent detection limit (1 sigma) was achieved to be 27 ppt with a 200-s averaging time, which is the best value reported so far. In addition, the normalized noise equivalent absorption (NNEA) coefficient reached 4.2 x 10(-10) cm(-1) W Hz(-1/2).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Assessing carotid atherosclerosis by fiber-optic multispectral photoacoustic tomography
    Hui, Jie
    Li, Rui
    Wang, Pu
    Phillips, Evan
    Bruning, Rebecca
    Liao, Chien-Sheng
    Sturek, Michael
    Goergen, Craig J.
    Cheng, Ji-Xin
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2015, 2015, 9323
  • [42] Photoacoustic Imaging using Microstructured Plastic Fiber-Optic Illumination
    Chen, Ming-Hui
    Tsai, Hsiu-An
    Lin, Yi-Hsun
    Lin, Wei-Chen
    Hu, Shao-Pu
    Chen, Wei-Te
    Wang, Shyh-Hau
    Chui, Hsiang-Chen
    2016 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2016,
  • [43] Fiber-Optic Lossy Mode Resonance Sensors
    Arregui, Francisco J.
    Del Villar, Ignacio
    Corres, Jesus M.
    Goicoechea, Javier
    Zamarreno, Carlos R.
    Elosua, Cesar
    Hernaez, Miguel
    Rivero, Pedro J.
    Socorro, Abian B.
    Urrutia, Aitor
    Sanchez, Pedro
    Zubiate, Pablo
    Lopez, Diego
    De Acha, Nerea
    Matias, Ignacio R.
    28TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS (EUROSENSORS 2014), 2014, 87 : 3 - 8
  • [44] Method for exciting fiber-optic resonance sensors
    Kuzin, AY
    MEASUREMENT TECHNIQUES USSR, 1995, 38 (11): : 1233 - 1236
  • [45] Sensitivity-enhanced Fabry-Perot interferometric fiber-optic microphone using hollow cantilever
    Tian, Shen
    Qiao, Yingying
    Liang, Mu
    Feng, Mingyang
    Gao, Yang
    Li, Lei
    Shan, Chongxin
    OPTICS EXPRESS, 2023, 31 (13) : 21796 - 21805
  • [46] Technology-enhanced fiber-optic education
    Palais, JC
    SIXTH INTERNATIONAL CONFERENCE ON EDUCATION AND TRAINING IN OPTICS AND PHOTONICS, 2000, 3831 : 252 - 258
  • [47] Construction of a CCD multichannel fiber-optic spectrometer and its application
    Qiu, Y
    Qu, XZ
    Song, XQ
    Chen, JX
    Chau, FT
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 1996, 24 (02) : 143 - 150
  • [48] Ultrahigh Sensitive Trace Gas Sensing System with Dual Fiber-Optic Cantilever Multiplexing-Based Differential Photoacoustic Detection
    Zhao, Xinyu
    Wang, Zhengzhi
    Li, Chenxi
    Wang, Heng
    Qi, Hongchao
    Guo, Min
    Ma, Fengxiang
    Chen, Ke
    ANALYTICAL CHEMISTRY, 2024, 96 (03) : 1046 - 1053
  • [49] Experimental research on a novel fiber-optic cantilever-type inclinometer
    Zhao, Y
    Yang, J
    Peng, BJ
    Yang, SY
    OPTICS AND LASER TECHNOLOGY, 2005, 37 (07): : 555 - 559
  • [50] Fiber-optic, cantilever-type acoustic motion velocity hydrophone
    Cranch, G. A.
    Miller, G. A.
    Kirkendall, C. K.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (01): : 103 - 114