On the integrality ratio for asymmetric TSP

被引:4
作者
Charikar, M [1 ]
Goemans, MX [1 ]
Karloff, H [1 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
来源
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS | 2004年
关键词
D O I
10.1109/FOCS.2004.45
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We improve the lower bound on the integrality ratio of the Held-Karp bound for asymmetric TSP (with triangle inequality)from 4/3 to 2.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 25 条
[1]   MOLECULAR COMPUTATION OF SOLUTIONS TO COMBINATORIAL PROBLEMS [J].
ADLEMAN, LM .
SCIENCE, 1994, 266 (5187) :1021-1024
[2]  
[Anonymous], 2002, COMB OPT (SER)
[3]  
[Anonymous], 1976, WORST CASE ANAL NEW
[4]   Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems [J].
Arora, S .
JOURNAL OF THE ACM, 1998, 45 (05) :753-782
[5]  
Bläser M, 2003, SIAM PROC S, P638
[6]  
BOYD S, 2004, COMB OPT 2004 C CO20
[7]  
BOYD S, 2002, P 9 C INT PROGR COMB, P83
[8]   On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems [J].
Carr, R ;
Vempala, S .
MATHEMATICAL PROGRAMMING, 2004, 100 (03) :569-587
[9]   Ant system: Optimization by a colony of cooperating agents [J].
Dorigo, M ;
Maniezzo, V ;
Colorni, A .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (01) :29-41
[10]   ON THE WORST-CASE PERFORMANCE OF SOME ALGORITHMS FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM [J].
FRIEZE, AM ;
GALBIATI, G ;
MAFFIOLI, F .
NETWORKS, 1982, 12 (01) :23-39