Stationary isothermic surfaces in Euclidean 3-space

被引:4
|
作者
Magnanini, Rolando [1 ]
Peralta-Salas, Daniel [2 ]
Sakaguchi, Shigeru [3 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] CSIC, Inst Ciencias Matemat, Plaza Murillo 2, E-28049 Madrid, Spain
[3] Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
EMBEDDED SURFACES; MINIMAL-SURFACES; UNIQUENESS; TOPOLOGY; GEOMETRY;
D O I
10.1007/s00208-015-1212-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a domain in R-3 with partial derivative Omega = partial derivative(R-3\(Omega) over bar), where partial derivative Omega is unbounded and connected, and let u be the solution of the Cauchy problem for the heat equation partial derivative(t)u = Delta u over R-3, where the initial data is the characteristic function of the set Omega(c) = R-3\Omega. We show that, if there exists a stationary isothermic surface Gamma of u with Gamma boolean AND partial derivative Omega = empty set , then both partial derivative Omega and Gamma must be either parallel planes or co-axial circular cylinders. This theorem completes the classification of stationary isothermic surfaces in the case that Gamma boolean AND partial derivative Omega = empty set and partial derivative Omega is unbounded. To prove this result, we establish a similar theorem for uniformly dense domains in R-3, a notion that was introduced by Magnanini et al. (Trans Am Math Soc 358:4821-4841, 2006). In the proof, we use methods from the theory of surfaces with constant mean curvature, combined with a careful analysis of certain asymptotic expansions and a surprising connection with the theory of transnormal functions.
引用
收藏
页码:97 / 124
页数:28
相关论文
共 50 条
  • [11] Singularities of helix surfaces in Euclidean 3-space
    Wang, Yongqiao
    Chang, Yuan
    Liu, Haiming
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 156
  • [12] Embankment Surfaces in Euclidean 3-Space and Their Visualizations
    Kazan, Ahmet
    Karadag, H. Bayram
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 617 - 636
  • [13] Singularities of Translation Surfaces in the Euclidean 3-Space
    Fukunaga, Tomonori
    Takahashi, Masatomo
    RESULTS IN MATHEMATICS, 2022, 77 (02)
  • [14] A Note on Minimal Surfaces in Euclidean 3-Space
    Zu Huan YU Qing Zhong LI School of Mathematical Sciences
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (11) : 2079 - 2086
  • [15] A note on minimal surfaces in Euclidean 3-space
    Zu Huan Yu
    Qing Zhong Li
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (11) : 2079 - 2086
  • [16] Quasi Ruled Surfaces in Euclidean 3-space
    Elsharkawy, Ayman
    Elsayied, Hoda K.
    Refaat, Aya
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [17] ON GEODESICS OF FRAMED SURFACES IN THE EUCLIDEAN 3-SPACE
    Takahashi, Masatomo
    TOHOKU MATHEMATICAL JOURNAL, 2024, 76 (02) : 199 - 215
  • [18] A Class of Weingarten Surfaces in Euclidean 3-Space
    Fu, Yu
    Li, Lan
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [19] Singularities of swept surfaces in Euclidean 3-space
    Mofarreh, Fatemah
    Abdel-Baky, Rashad A.
    AIMS MATHEMATICS, 2024, 9 (09): : 26049 - 26064
  • [20] Modified Sweeping Surfaces in Euclidean 3-Space
    Li, Yanlin
    Eren, Kemal
    Ersoy, Soley
    Savic, Ana
    AXIOMS, 2024, 13 (11)